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a b s t r a c t

The multiple scattering extensions of the pulsed field gradient (PFG) experiments can be used to charac-
terize restriction-induced anisotropy at different length scales. In double-PFG acquisitions that involve
two pairs of diffusion gradient pulses, the dependence of the MR signal attenuation on the angle between
the two gradients is a signature of restriction that can be observed even at low gradient strengths. In this
article, a comprehensive theoretical treatment of the double-PFG observation of restricted diffusion is
presented. In the first part of the article, the problem is treated for arbitrarily shaped pores under ideal-
ized experimental conditions, comprising infinitesimally narrow gradient pulses with long separation
times and long or vanishing mixing times. New insights are obtained when the treatment is applied to
simple pore shapes of spheres, ellipsoids, and capped cylinders. The capped cylinder geometry is consid-
ered in the second part of the article where the solution for a double-PFG experiment with arbitrary
experimental parameters is introduced. Although compartment shape anisotropy (CSA) is emphasized
here, the findings of this article can be used in gleaning the volume, eccentricity, and orientation distri-
bution function associated with ensembles of anisotropic compartments using double-PFG acquisitions
with arbitrary experimental parameters.

Published by Elsevier Inc.
1. Introduction

Heterogeneous specimens contain several different species of
molecules, which may be in different phases. In one scenario, a pop-
ulation of enclaves within a solid matrix may be filled with a liquid
whose molecules possess nuclear magnetism, hence are MR obser-
vable. When the time scale of the MR experiment is sufficiently long
for a significant portion of the molecules to probe the pore-grain
interface, the effect of molecular diffusion on the MR signal can be
quantified to procure information about the porous structure.

The incorporation of pulsed gradients into standard MR pulse se-
quences [1] has made it possible to enhance the effects of diffusion
on the MR signal intensity in a controllable manner. In its most
widely employed form, these pulsed field gradient (PFG) experi-
ments comprise one pair of gradients to encode displacements that
occur between the application of the two pulses. Such experiments
will be referred to hereafter as single-PFG acquisitions.

Among other information, the anisotropy of the pores can be
obtained as a result of the restricting character of the solid host do-
main. However, in random media, the orientation of the pores is
randomly distributed, making the single-PFG MR signal invariant
to changes in the direction of the gradients. Consequently, the
measured anisotropy in single-PFG acquisitions emerges from the
Inc.
interplay between the anisotropy of the compartments (hereafter
referred to as compartment shape anisotropy, CSA) and the coher-
ence in the population of these compartments (hereafter referred
to as ensemble anisotropy, EA). Therefore, single-PFG MR provides
a feasible means to characterize any coherence in the orientation of
restricting domains.

This observation has proven to be particularly significant for
biological applications of MR. In fact, the orientational dependence
(anisotropy) of the diffusion-weighted MR signal intensity has
been exploited to generate exquisite contrast between white-
and gray-matter regions of the brain [2,3]. Further, when there is
significant anisotropy in the MR signal, the voxel-averaged orienta-
tion of the cells can be computed, and anatomical connections be-
tween different regions of the brain can be mapped [4,5]. As
established by experimental investigations, anisotropy observed
in neural tissue specimens via single-PFG acquisitions is primarily
a product of the interaction between cellular membranes and dif-
fusing water molecules, suggesting the restricting character of the
cellular membranes [6,7]. Thus, such anisotropy is observed when
the cells have an elongated shape. Moreover, any incoherence in
the orientation of a collection of cells leads to a decrease in the ob-
served anisotropy [3].

Although single-PFG has been successful in characterizing the
coherence (EA) of pores with CSA, the deduced anisotropy informa-
tion is compromised due to the influence of one type of anisotropy
on the other. Therefore, decoupling various mechanisms of anisot-
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ropy could be very useful in obtaining information about the shape
of the cells and, independently, an orientation distribution function
for the population of cells within the voxel.

A natural extension of single-PFG acquisitions could decouple
the effects of different mechanisms of anisotropy. This extension
is achieved by applying two pairs of diffusion gradients [8] sepa-
rated from each other by a mixing time, tm, and will be referred
to as double-PFG acquisitions. A spin echo version of such a pulse
sequence is illustrated in Fig. 1. Variants of this double-PFG se-
quence have been considered for and employed in a host of differ-
ent applications [9–16].

An early theoretical investigation of the effects of restricted dif-
fusion on the double-PFG signal suggested that even for isotropi-
cally distributed pores, the MR signal intensity may be
dependent on the angle between the two gradients of the dou-
ble-PFG sequence [17]. This early work predicted that angular
dependence at long mixing times would be observed only when
the compartments were non-spherical. Moreover, at short mixing
times, even spherical pores exhibited such an angular dependence.
This result points to yet another mechanism of anisotropy, called
microscopic anisotropy (lA). This kind of anisotropy was predicted
to influence the signal even at very low diffusion weightings [17],
and suggested a means of obtaining a signature for restricted diffu-
sion conveniently, because the presence of lA is tantamount to the
existence of restrictions.

Fig. 2 illustrates when these three different mechanisms of
anisotropy may be encountered. When the cells are spherical, only
lA can be observed. A randomly oriented population of anisotropic
cells will, in addition, exhibit CSA. Finally, if the anisotropic cells
have any orientational preference in their alignment, all three
mechanisms of diffusion anisotropy—lA, CSA, and EA—coexist.

Diffusion-induced anisotropy of the signal is not the only signa-
ture for restricted diffusion that double-PFG experiments provide.
Similar to the case in single-PFG acquisitions [18], the double-PFG
Fig. 2. Three different scenarios for diffusion anisotropy. On the left is a population
of isotropic pores that exhibits only microscopic anisotropy (lA) at a subcompart-
mental length scale induced by the restricting walls. If the pores have an elongated
structure, the specimen is said to possess compartment shape anisotropy (CSA) as
well. The center image depicts a randomly distributed population of such
compartments. The panel on the right has a different arrangement of the same
pores where all pores are coherently oriented. When there is any coherence in the
orientation of the anisotropic pores, the specimen additionally exhibits ensemble
anisotropy (EA).

Fig. 1. The spin-echo version of the double-PFG experiment. The radiofrequency
(RF) pulses are depicted using black boxes, whereas blank rectangles illustrate the
diffusion-sensitizing gradient pulses, denoted by the gradient vectors G1 and G2,
with durations d1 and d2, respectively. D1 and D2 denote the separation of the two
pulses in the respective PFG blocks. The two encoding blocks are separated from
each other by the mixing time, tm.
signal, when plotted against the gradient strength, does not decay
monotonically—a phenomenon called diffusion–diffraction [19]. In
addition, double-PFG signal at short mixing times was predicted to
become negative at a gradient strength smaller than that necessary
to observe the non-monotonicity in single-PFG MR acquisitions.
Moreover, unlike the diffraction wells in single-PFG acquisitions,
the zero-crossing of the double-PFG signal decay curves was
shown to be robust to the heterogeneity of the specimen [19].
These predictions were recently validated experimentally [20].

In a recent study [21], a theoretical treatment for the detection
of lA via double-PFG experiments was presented. There, the
emphasis was placed on the quadratic term in a Taylor series
expansion of the signal, which exhibited lA. The analysis did not
make any assumption regarding the experimental timing parame-
ters, and significant changes in the estimates of compartment size
were predicted if double-PFG data was analyzed using the formu-
lations in Ref. [17], which assumed limiting values for the experi-
mental timing parameters. More recently, Shemesh et al.
confirmed experimentally that accurate size estimates are feasible
only when the experimental parameters were accounted for, as
long as the diffusion time is not extraordinarily short [22]. In Ref.
[21], the need to decouple the effects of EA and lA was recognized
and a scheme to do so was introduced.

Following Mitra’s recognition for the prospect of resolving CSA
in a randomly distributed ensemble of pores [17], Cheng and Cory
performed experiments on elongated yeast cells, and reported suc-
cessful delineation of cell eccentricity using double-PFG MR at long
mixing times [23]. In their analysis, the cells were assumed to be
ellipsoids of revolution, and cell size and eccentricity were esti-
mated by using data obtained by setting the angle between the
two gradients to 0� and 90�. The brief analytical treatment in Ref.
[23] made the same assumptions as in Ref. [17] regarding the
experimental timing parameters. It is surprising that despite its
far reaching implications, the double-PFG experiments have not
been studied extensively to assess the CSA.

In this article, we provide a comprehensive theoretical treat-
ment of the problem of double-PFG experiments by extending
the theory of restricted diffusion to account for CSA as well. In
the next section, we set the experimental timing parameters to
their limiting values. The derivations are based on arbitrary pore
shapes, although two symmetry conditions were imposed in
obtaining a Taylor series representation of the signal intensity for
simplicity. Explicit relations up to the fourth-order term in a Taylor
series expansion of the signal are provided. Then more specific
pore geometries consisting of spherical, ellipsoidal, and cylindrical
pores are considered, for which solutions can be obtained for arbi-
trary gradient strengths. In the subsequent section, we derive a
general solution of the double-PFG acquisition that takes all exper-
imental conditions of the acquisition into account. These formula-
tions are based on a recent generalization [24] of the multiple
correlation function method [25,26].

2. Double-PFG MR in ‘‘ideal’’ experimental conditions

It is a formidable task to derive a general signal attenuation
expression for the double-PFG acquisitions with arbitrary experi-
mental parameters and for arbitrarily shaped pores. Therefore, as
mentioned in the Introduction, a number of simplifying assump-
tions have been made in the past. In this section, we shall address
the problem in ideal experimental parameters, i.e., when infinites-
imally narrow diffusion pulses ðd ¼ 0Þ, separated from each other
by infinitely long diffusion times ðD!1Þ, are employed. More-
over, the mixing time is considered to be either infinitely long
ðtm !1Þ or vanishing ðtm ¼ 0Þ. Let us define a vector quantity, q,
to be the time integral of a gradient pulse multiplied by ð2pÞ�1c,
where c is the gyromagnetic ratio of the spins being examined.
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Clearly, for rectangular pulses, q ¼ ð2pÞ�1cdG, where d is the dura-
tion of a gradient pulse defined by the gradient vector, G. For sim-
plicity, we assume that the q-vectors used in the two PFG blocks of
the double-PFG acquisition have the same magnitude, i.e.,
q :¼ jq1j ¼ jq2j. Further we shall denote by v̂ the unit vector paral-
lel to a vector v, e.g., q1 ¼ qq̂1.

2.1. General pore shapes

2.1.1. Arbitrary q-values
We start by considering arbitrary pore shapes and q-values. Let

V denote the volume of the pore space. The double-PFG MR signal
at ideal experimental conditions with infinitely long mixing times
is given by [17,19]

E1ðq1;q2Þ ¼ j~qðq1Þj
2j~qðq2Þj

2
; ð1Þ

where q1 and q2 are the wavevectors in the first and second PFG
blocks, respectively. The function ~qðqÞ is defined by the relation

~qðqÞ ¼
Z

V
drqðrÞe�i2pq�r; ð2Þ

where qðrÞ is the initial spin density. The signal intensity at vanish-
ing mixing times is also given in terms of this function to be [17,19]

E0ðq1;q2Þ ¼ ~qðq1Þ ~qðq2Þ ~qðq1 þ q2Þ
�
: ð3Þ

Note that the above relationships yield the MR signal attenuation
for a single pore oriented in a particular way, or equivalently, when
all pores are identical and coherently oriented.

A more general scenario involves a distribution of pore orienta-
tions. In this case, the MR signal can be evaluated by taking the ori-
entational average of the above expressions. Such an operation will
be denoted by :h ibX . When the pores possess a symmetry axis, the
direction of that axis uniquely determines the orientational state
of the pore. In this case, orientational averaging can be performed
by an integral over the surface of the unit sphere, i.e.,

Eðq1;q2Þh ibX ¼
Z

S
dû f ðûÞEðq1;q2; ûÞ; ð4Þ

where û denotes the orientation of the symmetry axis of a particu-
lar pore, and f ðûÞ is the pore orientation distribution function de-
fined over the surface of the unit sphere, denoted by S. It should
be noted that we dropped the subscript of E as the above expression
applies to all values of the experimental parameters including tm.

As demonstrated in Ref. [21], a convenient representation of the
orientation distribution function is given in terms of spherical har-
monics by

f ðûÞ ¼
X1

l¼0;2;4;...

Xl

m¼�l

flm YlmðûÞ; ð5Þ

where the terms corresponding to odd-l values were dropped under
the assumption that f ðûÞ is antipodally symmetric. It should be
noted that f00 is always equal to ð4pÞ�1=2 as a result of the normal-
ization condition for f ðûÞ. When Eq. 5 is inserted into Eq. 4, one ob-
tains the expansion

Eðq1;q2Þh ibX ¼ Eðq1;q2; ûÞh iiso þ
X1

l¼2;4;...

�
Xl

m¼�l

flm

Z
S

dûYlmðûÞEðq1;q2; ûÞ; ð6Þ

where

Eðq1;q2; ûÞh iiso ¼
1

4p

Z
S

dûEðq1;q2; ûÞ: ð7Þ

Note that this term is independent of any coherence in the orienta-
tion of the pores in the ensemble, and thus immune to EA. There-
fore, the separation of this term is of particular interest for the
problem tackled in this article, as it provides a way to decouple
EA and other kinds of anisotropy. In fact, this scheme was proposed
first in Ref. [21] to isolate the effects of lA and EA.

2.1.2. Small q-values
To elucidate salient characteristics of the MR signal, a Taylor

series expansion of the MR signal decay up to the fourth order term
is employed in this section. When this is done, the results are
applicable in a limited range of q-values; therefore the findings
of this section will primarily be used for pedagogical purposes.
To this end, we start by considering arbitrary pore shapes. How-
ever, as outlined below, a significant simplification of the problem
is achieved when the pores are assumed to possess a symmetry
axis, and when the pore shape is symmetric under reflections
about its center of gravity.

The ~qðqÞ function defined above can be expanded in a Taylor
series around q ¼ 0, yielding the expression

~qðqÞ ¼ 1� ð2pqÞ2

2
Aðq̂Þ þ ð2pqÞ4

24
Bðq̂Þ þ Oðð2pqaÞ6Þ; ð8Þ

where a is the longest end-to-end distance in the pore. We dropped
the odd ordered terms assuming that the pore is symmetric under
reflections about its center of gravity. The functions Aðq̂Þ, and Bðq̂Þ
are given by

Aðq̂Þ ¼ 1
V

Z
V

dr ðq̂ � rÞ2; ð9aÞ

Bðq̂Þ ¼ 1
V

Z
V

dr ðq̂ � rÞ4; ð9bÞ

where we have taken qðrÞ ¼ V�1. The orientationally averaged dou-
ble-PFG MR signal at small values of 2pqa, and long mixing times is
given by

E1h ibX ’ 1� ð2pqÞ2

2
Aðq̂1Þ þ

ð2pqÞ4

24
Bðq̂1Þ

 !2*

� 1� ð2pqÞ2

2
Aðq̂2Þ þ

ð2pqÞ4

24
Bðq̂2Þ

 !2+
bX : ð10Þ

Since a scheme of removing the effects of EA has already been intro-
duced above, we can focus on the EA-independent ‘‘component’’ of
the signal, which is the same expression as that obtained for iso-
tropically (e.g., randomly) distributed pores. Again we make the
assumption that the pores possess a symmetry axis; rotations
around this axis do not change the geometry. In this case, the signal
intensity can be written as

E1h iiso’ 1�2ð2pqÞ2Aðq̂Þ
D

þð2pqÞ4

6
Bðq̂Þþ3Aðq̂Þ2þ6Aðq̂1ÞAðq̂2Þ
� �+

iso

:

ð11Þ

The isotropic orientational averaging can be performed on a term-
by-term basis. Moreover, in the evaluation of Aðq̂Þh iiso, Bðq̂Þh iiso,
and Aðq̂Þ2

D E
iso

, instead of integrating over different pore orienta-
tions, the pore orientation can be held constant, and the integral
can be performed over the gradient direction, i.e.,

Ah iiso ¼
1

4pV

Z
V0

dr
Z

S
dq̂ ðq̂ � rÞ2 ð12Þ

Bh iiso ¼
1

4pV

Z
V0

dr
Z

S
dq̂ ðq̂ � rÞ4 ð13Þ

A2
D E

iso
¼ 1

4pV2

Z
V0

dr1

Z
V0

dr2

Z
S

dq̂ ðq̂ � r1Þ2ðq̂ � r2Þ2; ð14Þ
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Fig. 3. Special geometries considered in this article. Left: sphere of radius R0.
Middle: ellipsoid of revolution (spheroid) of semi axes b, b, and c. Right: capped
cylinder of radius r0, and length L. The angle between the two gradient vectors is
denoted by w.
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where V0 denotes the volume occupied by the pore oriented in a
particular direction. Note that the arguments of A and B were
dropped for brevity.

The remaining quantity A12h iiso :¼ Aðq̂1ÞAðq̂2Þh iiso is given by the
similar expression

A12h iiso ¼
1

4pV2

Z
V0

dr1

Z
V0

dr2

Z
S

dq̂1 ðq̂1 � r1Þ2ðq̂2 � r2Þ2: ð15Þ

However, this expression is not immediately useful because as q̂1 is
varied, q̂2 should vary accordingly. Therefore, it is convenient to
decompose q̂2 into components parallel and perpendicular to q̂1,
i.e., q̂2 ¼ q̂1 cos wþ q̂? sin w, where w is the angle between q̂1 and
q̂2, and q̂? is a unit vector perpendicular to q̂1, i.e., jq̂?j ¼ 1, and
q̂? � q̂1 ¼ 0. When the expression

ðq̂2 � r2Þ2 ¼ðq̂1 � r2Þ2 cos2 wþ ðq̂? � r2Þ2 sin2 w

þ ðq̂1 � r2Þðq̂? � r2Þ sinð2wÞ ð16Þ

is inserted into Eq. 15, the contribution from the sinð2wÞ term van-
ishes as a result of the symmetry about the center of gravity of the
pore. Therefore, A12h iiso is given by

A12h iiso ¼ A2
D E

iso
cos2 wþ A?h iiso sin2 w; ð17Þ

where

A?h iiso ¼
1

4pV2

Z
V0

dr1

Z
V0

dr2

Z
S

dq̂ ðq̂ � r1Þ2ðq̂? � r2Þ2: ð18Þ

In the evaluation of this expression, q̂? should always remain per-
pendicular to q̂ in the same sense. Assume that at a particular in-
stance, when q̂ is the unit direction along the z-axis, q̂? is
oriented along x̂. The transformation that converts ẑ into an arbi-
trary orientation,

q̂ ¼
sin h cos /

sin h sin /

cos h

0B@
1CA; ð19Þ

where h and / are, respectively, the polar and azimuthal angles, is
the rotation around the axis ð� sin /; cos /; 0ÞT by an angle h. The
same rotation will transform x̂ into the orientation

q̂? ¼
cos h cos2 /þ sin2 /

�ð1� cos hÞ sin / cos /

� sin h cos /

0B@
1CA: ð20Þ

With these definitions, inserting Eq. 17 into Eq. 11 yields a signal
attenuation of

E1h iiso ’ 1� 2ð2pqÞ2 Ah iiso

þ ð2pqÞ4

6
Bh iiso þ 3ð2þ cosð2wÞÞ A2

D E
iso

h
þ3ð1� cosð2wÞÞ A?h iiso� ð21Þ

at long mixing times.
The double-PFG signal intensity at short mixing times can be

calculated using essentially the same procedure and definitions.
The details of this derivation are not provided. The result is given
by

E0h iiso ’ 1� ð2pqÞ2ð2þ cos wÞ Ah iiso

þ ð2pqÞ4

24
2ð4þ 4 cos wþ cosð2wÞÞ Bh iiso½

þ3ð7þ 8 cos wþ 3 cosð2wÞÞ A2
D E

iso

þ9ð1� cosð2wÞÞ A?h iiso�: ð22Þ
It should be noted that the quadratic terms in the above expressions
are consistent with previous work. The quadratic term at tm ¼ 0 has
an angular dependence characterized by the function ð2þ cos wÞ as
first demonstrated by Mitra in Ref. [17]. The angular independence
of the quadratic term for the experiment at long mixing times had
also been predicted by Mitra who suggested that the fourth-order
term in this regime would exhibit angular dependence only if the
pores were anisotropic. This finding is also consistent with Eq. 21
above as A2

D E
iso
¼ A?h iiso for spherical pores. Note that this equa-

tion indicates in addition that the ‘‘angular frequency’’ of E1h iiso is
twice that in the quadratic term of E0h iiso. Interestingly, the
cosð2wÞ dependence emerges in the fourth-order term of E0h iiso as
well. However, cosð2wÞ dependent terms do not cancel for isotropic
(spherical) pores at short mixing times.

2.2. Special pore shapes

In this section, we shall provide explicit relationships for the
three special pore shapes illustrated in Fig. 3. The first case involves
a spherical pore of radius R0. The second geometry is obtained by
isotropically distributing ellipsoids of revolution with semi axes
of b, b, and c. Clearly, when c > b, one obtains a prolate ellipsoid,
whereas oblate shapes are obtained when b > c. The third geome-
try contains an isotropic distribution of capped cylinders of radius
r0 and length L. We shall express the CSA of the latter two geome-
tries via defining a quantity � ¼ c=b in the case of ellipsoidal pores,
and � ¼ L=ð2r0Þ in the case of cylindrical pores. Clearly, the spher-
ical pore is just a special case of the ellipsoidal pore with c ¼ R0 and
� ¼ 1.

For arbitrary q-values, Eqs. (1)–(3) can be used to calculate the
signal when the pore is oriented along an arbitrary direction. The
relevant ~qðqÞ functions, for the considered geometries of spherical
(sph), ellipsoidal (ell), and cylindrical (cyl) pores, are given by
[19,27]

~qsphðqÞ ¼ 3

ð2pqR0Þ
2

sinð2pqR0Þ
2pqR0

� cosð2pqR0Þ
� �

ð23aÞ

~qellðqÞ ¼ 3

ð2pQÞ2
sinð2pQÞ

2pQ
� cosð2pQÞ

� �
ð23bÞ

~qcylðqÞ ¼
sinðpqkLÞ J1ð2pq?r0Þ

p2qk q? Lr0
ð23cÞ

where in the expressions for ellipsoidal as well as cylindrical pores,
qk and q? are the components of q parallel and perpendicular to the

symmetry axis, respectively. Moreover, Q :¼ ðb2q2
? þ c2q2

k Þ
1=2. Once

the signal attenuation for a particular pore orientation is obtained,
Eh iiso can be evaluated using Eq. 7.

The Taylor series expansions for the signal attenuation are
obtained using the relations derived in the previous section. At
long mixing times, these expressions are given after some alge-
bra by
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Esph
1 ’ 1� 2

5
ð2pqR0Þ

2 þ 13
175
ð2pqR0Þ

4 ð24aÞ

Eell
1

D E
iso
’ 1� 2

15
ð2pqÞ2ð2b2 þ c2Þ

þ ð2pqÞ4

2625
97b4 þ 32c4 þ 66b2c2
h

þ7ðb2 � c2Þ2 cosð2wÞ
i

ð24bÞ

Ecyl
1

D E
iso
’ 1� ð2pqÞ2

18
6r2

0 þ L2
� �

þ ð2pqÞ4

10800
615r4

0 þ 22L4 þ 150r2
0L2

h
þ5 3r2

0 � L2
� �2

cosð2wÞ
�
: ð24cÞ

**** The relevant expressions for vanishing mixing times are ob-
tained similarly, and given by

Esph
0 ’ 1� ð2pqR0Þ

2

5
ð2þ cos wÞ

þ ð2pqR0Þ
4

700
ð55þ 48 cos wþ 5 cosð2wÞÞ ð25aÞ

Eell
0

D E
iso
’ 1� ð2pqÞ2

15
ð2b2 þ c2Þð2þ cos wÞ

þ ð2pqÞ4

10500
419b4 þ 144c4 þ 262b2c2
h

þ48ð8b4 þ 3c4 þ 4b2c2Þ cos w

þð61b4 þ 36c4 � 22b2c2Þ cosð2wÞ
i

ð25bÞ

Ecyl
0

D E
iso
’ 1� ð2pqÞ2

36
6r2

0 þ L2
� �

ð2þ cos wÞ

þ ð2pqÞ4

14400
875r4

0 þ 32L4 þ 210r2
0L2

h
þ32 25r4

0 þ L4 þ 5r2
0L2

� �
cos w

þ 125r4
0 þ 8L4 � 10r2

0L2
� �

cosð2wÞ
i
: ð25cÞ

The correctness of the above expressions for the ellipsoidal pores
can be verified by setting b ¼ c ¼ R0, and comparing the result with
the much simpler solutions obtained for spherical pores. Further,
Cheng and Cory reported [23] that in randomly oriented ellipsoidal
pores, the difference between the signal values at w ¼ 0� and
w ¼ 90� is 2ð2pqÞ4ðb2 � c2Þ2=375. They also applied this relationship
on data collected from elongated yeast cells and observed that the
results are in reasonable agreement with their estimates from
microscopic images of the same specimen. Note that the relation-
ship they employed is consistent with Eq. 24b.

3. Double-PFG MR with arbitrary experimental parameters

The treatment above considered only limiting cases for the
experimental timing parameters. Because of its simplicity, study-
ing this regime is advantageous in understanding the main
features of the MR signal decay. However, quantitatively accu-
rate estimates of pore size and eccentricity are impossible to
achieve when the true experimental parameters are not taken
into consideration; the main goal of this section is to address
this issue.

When a general MR experiment is considered, the full eigen-
spectrum of the Laplacian operator for the particular geometry
influences the resulting signal attenuation. However, the eigen-
problem was studied analytically only for simple geometries
such as infinite parallel plates, infinite cylinders, and spheres.
The capped cylinder geometry considered in this article is partic-
ularly well-suited to study the effects of experimental timing
parameters on the resolution of CSA, because this geometry
can be envisioned as a combination of two parallel plates and
a cylinder; such a decomposition is possible thanks to the sepa-
ration of variables.

A series of theoretical developments [28–30], inspired by Rob-
ertson’s original description [31], led to the formulation of the mul-
tiple correlation function (MCF) framework [25,26] that enables
the derivation of analytical expressions for the diffusion-attenu-
ated MR signal. The MCF approach yields approximate relations
for general gradient waveforms, and exact expressions when the
gradient waveform is piecewise constant. This technique was re-
cently generalized to handle variations in the orientation of the
gradients during the course of the MR pulse sequence [24] making
it applicable to problems such as that considered in this article
where the focus is on the dependence of the signal intensity on
the angle between the two gradients of the double-PFG sequence.

The MCF technique employs the eigenfunctions of the Laplace
operator, i.e., the solutions of the eigenproblem

�D0r2hrjkmni ¼ kkmnhrjkmni; ð26Þ

where r is the position variable, D0 is the diffusivity, and kkmn is
the eigenvalue specified by the indices k, m, and n corresponding
to the eigenvector denoted by hrjkmni in Dirac’s bra-ket notation.
We assume that these eigenfunctions obey the reflective (Neu-
mann) boundary condition on the pore-grain interface and note
that wall relaxation can be incorporated into the MCF framework
using the scheme in Ref. [32]. In this section, we shall start by
considering the capped cylinder geometry whose symmetry axis
is oriented along the z-direction. In this case, the z-variable can
be separated from the transverse polar coordinates, r and /, so
that hrjkmni ¼ hzjki hr;/jmni, and the corresponding eigenvalue
is given by

kkmn ¼
p2k2

L2 þ
a2

mn

r2
0

 !
D0; ð27Þ

where amn is the n-th zero of the derivative of the m-th order Bessel
function.

Consider a pulse sequence with N intervals, so that during the j-
th interval, whose duration is denoted by dj, the corresponding gra-
dient vector, denoted by Gj, is constant and leads to the q-vector,
qj ¼ ð2pÞ�1cdjGj. The resulting MR signal can be simply written
to be

E ¼ 000
YN

j¼1

eMj

�����
�����000

* +�
; ð28Þ

where

Mj ¼ �Kdj þ i2pqj � Fy: ð29Þ

In the above expression, K is an infinite-dimensional diagonal ma-
trix whose elements are proportional to the eigenvalues, i.e.,

hkmnjKjk0m0n0i ¼ kkmnhkjk0ihmjm0ihnjn0i; ð30Þ

and F is a vector operator whose ðkmn; k0m0n0Þ-th component is gi-
ven by

hkmnjFjk0m0n0i¼
Z

V0

drhkmnjrirhrjk0m0n0i¼
hmnjTajm0n0ihkjk0i
hmnjTbjm0n0ihkjk0i
hkjPjk0ihmjm0ihnjn0i

0B@
1CA
ð31Þ

for the three-dimensional capped cylinder geometry considered
here. The components of the matrices Ta and P are provided in
Ref. [25], whereas the elements of Tb are derived from those of Ta

in Ref. [24]. Here we reproduce them for completeness:
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hkjPjk0i ¼
L=2 if k ¼ k0

Lek ek0
ðð�1Þkþk0 �1Þ ðk2þk02Þ

p2ðk2�k02Þ2
if k–k0

8<: ð32aÞ

hmnjTajm0n0i ¼r0 ðhmjm0 þ 1i þ hmjm0 � 1iÞ
� ð1þ hmj0i þ hm0j0iÞ1=2

� bmnbm0n0
a2

mn þ a2
m0n0 � 2mm0

a2
mn � a2

m0n0
� �2 ð32bÞ

hmnjTbjm0n0i ¼i r0 ðhmjm0 þ 1i � hmjm0 � 1iÞ
� ð1þ hmj0i þ hm0j0iÞ1=2

� bmnbm0n0
a2

mn þ a2
m0n0 � 2mm0

a2
mn � a2

m0n0
� �2 ; ð32cÞ

where

ek ¼ð2� hkj0iÞ1=2 ð33aÞ

bmn ¼
1 if m ¼ n ¼ 0

amn

a2
mn�m2ð Þ1=2 otherwise

8<: : ð33bÞ

Clearly, the matrix K can be written as

hkmnjKjk0m0n0i ¼ hmjm0ihnjn0ihkjKkjk0i þ hkjk0ihmnjK?jm0n0i; ð34Þ

where the components of Kk, and K? are given by

hkjKkjk0i ¼
D0p2k2

L2 hkjk0i ð35aÞ

hmnjK?jm0n0i ¼
D0a2

mn

r2
0

hmjm0ihnjn0i: ð35bÞ

This decomposition makes a similar decomposition for Mj possible:

Mj ¼ Mjk þMj?; ð36Þ

where

hkmnjMjkjk0m0n0i ¼ �hkjKkjk0idj þ i2pðqjÞzhkjPjk
0i

	 

hmjm0ihnjn0i

ð37aÞ
hkmnjMj?jk0m0n0i ¼ �hmnjK?jm0n0idj þ i2pðqjÞxhmnjTajm0n0i

	
þi2pðqjÞyhmnjTbjm0n0i

i
hkjk0i; ð37bÞ

where we dropped the ‘‘�’’ sign as P, Ta, and Tb are all Hermitian.
Using the expressions above, it is straightforward to show that
Mjk commutes with Mj?. Therefore,

eMj ¼ eMjkþMj? ¼ eMjkeMj? : ð38Þ

More generally, note that

eMjkþMj0? ¼ eMjkeMj0? : ð39Þ

Employing the above identities in Eq. 28 yields

E ¼ 0 00
YN
j¼1

eMjk

 ! YN

j0¼1

eMj0?

0@ 1A������
������0

* +������
������00

* +�
¼ Ek E?; ð40Þ

where

Ek ¼ 0
YN
j¼1

e�Kkdjþi2pqjkP

�����
�����0

* +�
ð41aÞ

E? ¼ 00
YN
j¼1

e�K?djþi2pqjaTaþi2pqjbTb

�����
�����00

* +�
; ð41bÞ

where qjk is the component of the qj-vector along the cylinder’s
symmetry axis, whereas qja and qjb are the components of qj per-
pendicular to each other and to the lateral surface of the cylinder.
When the cylinder is oriented along an arbitrary direction û, spec-
ified by the polar angle h and the azimuthal angle /, the decompo-
sition of qj can be obtained through the dot products

qjk ¼qj � û ð42aÞ
qja ¼qj � v̂ ð42bÞ
qjb ¼qj � ŵ; ð42cÞ

where

û ¼
sin h cos /

sin h sin /

cos h

0B@
1CA ð43aÞ

v̂ ¼
cos h cos2 /þ sin2 /

�ð1� cos hÞ sin / cos /

� sin h cos /

0B@
1CA ð43bÞ

ŵ ¼
�ð1� cos hÞ sin / cos /

cos h sin2 /þ cos2 /

� sin h sin /

0B@
1CA: ð43cÞ

Eq. 40 suggests that the separation of variables in the eigenproblem
of Eq. 26 makes it possible to express the signal attenuation for a
three-dimensional geometry obtained via an arbitrary gradient
waveform as a product of signal decays due to one- and two-dimen-
sional geometries. This fact was used somewhat intrinsically in Ref.
[33].

When the double-PFG experiment depicted in Fig. 1 is con-
cerned, the ‘‘k’’, and ‘‘\’’ components of E can be written in a
straightforward manner as

Ek ¼ 0 e�Kkdþi2pq1kPe�KkðD�dÞe�Kkd�i2pq1kPe�Kkðtm�dÞ���
e�Kkd�i2pq2kPe�KkðD�dÞe�Kkdþi2pq2kP

��0�� ð44aÞ
E? ¼ 00 e�K?dþi2pq1aTaþi2pq1bTb e�K?ðD�dÞ���

e�K?d�i2pq1aTa�i2pq1bTb e�K?ðtm�dÞ

e�K?d�i2pq2aTa�i2pq2bTb e�K?ðD�dÞ

e�K?dþi2pq2aTaþi2pq2bTb
��00
�� ð44bÞ

where we have taken the duration (d) and the separation (D) of the
gradients in each PFG block to be the same. The product of Ek and E?
as defined above yields Eðq1;q2; ûÞ, which can be plugged into Eq. 6
to obtain the MR signal attenuation predicted for double-PFG acqui-
sitions with arbitrary experimental parameters and for general dis-
tributions of cylindrical pores.

4. Simulations

In this section, we illustrate our findings based on the theory
described above. All results are presented for the three special
geometries considered. For meaningful comparison of the results
for different geometries, we developed a unified definition for
the q-value. This definition is obtained by setting the quadratic
terms in the Taylor series expansion to be equal in all geometries
yielding the relations between the dimensions of different pore
shapes. The attenuation at very small q-values for different geom-
etries is then approximately equal and on the same order of mag-
nitude at higher q-values. Interestingly, the quadratic terms of the
expressions for tm ¼ 0 (Eqs. (25a–c)) and tm !1 (Eqs. (24a–c))
yield the same correspondences in all geometries. The relevant
expressions are

b2 ¼ 3
2þ �2 R2

0 ð45aÞ

r2
0 ¼

18
5ð3þ 2�2ÞR

2
0; ð45bÞ
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where � ¼ c=b for the ellipsoidal geometry and � ¼ L=ð2r0Þ for the
cylindrical pores as defined earlier. The correspondence relations
above make it possible to define the q-values using the dimension-
less quantity qR0 for all three geometries.

In addition, we shall define two simple quantities, l and r,
which can be estimated from the MR signal profile through the
relations

l ¼ Eðw ¼ 180�Þ
Eðw ¼ 0�Þ ð46aÞ

r ¼ Eðw ¼ 0�Þ
Eðw ¼ 90�Þ : ð46bÞ

These quantities are expected to quantify different features of the
angular double-PFG signal profile.

In Fig. 4, the simulation results predicted for the double-PFG
acquisitions with ideal experimental parameters are depicted.
Fig. 4. The double-PFG NMR signal at long (left column) and vanishing (right column) m
radius R0 at five different q-values. Corresponding signal attenuation profiles for random
Finally, the bottom row shows the signal attenuation profiles for randomly oriented cyli
term of the signal attenuation is the same in all geometries. The continuous and dotted po
values after taking their absolute values.
The signal attenuation profiles at long mixing times are shown in
the left column; where in the right column are the signal profiles
for vanishing mixing times. In the long mixing time regime, spher-
ical pores exhibit no angular dependence ðl ¼ r ¼ 1Þ even at very
large q-values. When the simulations are repeated for isotropically
distributed ellipsoids and cylinders ð� ¼ 4Þ, an angular dependence
is observed. Note that the l-values are still identically 1 for all q-
values considered. On the other hand, r values, which are approx-
imately 1 at small q, increase with increasing q-values. Therefore,
an angular dependence at long mixing times and reasonably high
q-values can be considered to be a signature for CSA.

The profiles for short mixing times are generally more compli-
cated than their counterparts in the tm !1 regime. In spherical
pores, bell-shaped curves ðl > 1;r < 1Þ appear at small q-values,
which is a signature for restricted diffusion, or lA, at small tm-val-
ues. The profiles at high q-values are complicated by the diffrac-
ixing times. The top row depicts the signal attenuation values for spherical pores of
ly oriented ellipsoidal pores with � ¼ c=b ¼ 4 are demonstrated in the middle row.
ndrical pores with � ¼ L=ð2r0Þ ¼ 4. The q-values are chosen such that the quadratic
rtions of each curve correspond, respectively, to the positive and the negative signal
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tion-like features, which will be discussed below. The profiles for
ellipsoidal and cylindrical pores suggest similar behavior at small
values of qR0. However, when qR0 ¼ 0:5, r becomes larger than 1
as a result of the higher ‘‘frequency’’ oscillations of the signal. All
of these findings could be predicted to some extent based on the
Taylor series representation of the signal intensity.

The dotted sections of the curves in Fig. 4 represent the absolute
values of the negative-valued portions of the profiles. As predicted in
[19], at long mixing times, the signal, when plotted as a function of q,
rebounds from the horizontal axis (at qR0 ’ 0:71 for spherical pores)
and the signal is positive-valued throughout. The left column of Fig. 4
is consistent with these predictions, which explain why the signal for
spherical pores at qR0 ¼ 0:75 is smaller than that at qR0 ¼ 1. Note
that the same behavior is not observed for the other geometries as
a result of the smoothing effect of the heterogeneity of the specimen
at long mixing times. Unlike the problem considered in Ref. [19];
however, this heterogeneity is not due to the variations in the pore
sizes, but occurs as a result of orientational incoherence. Consis-
tently with [19], at short mixing times, negative signal values are
observed at half the q-value at which the signal rebounds in the long
tm regime. Interestingly, the diffraction-related zero-crossing of the
MR signal is predicted even for randomly distributed ellipsoids and
cylinders, suggesting the robustness of the diffraction effects to the
orientational dispersion of the pores.

In the simulations presented in Fig. 4 as well as in those dis-
cussed below, the evaluation of the orientational average in Eqs.
6 and 7 was performed using an iterated Gaussian quadrature
scheme with 48 transformation points. In principle, one can use
the Taylor series representation as an alternative. To assess the
performance of such an approach, in Fig. 5 we plot the signal atten-
uation against the qR0 value. We show the results for w ¼ 90� and
note that similar curves were obtained for other angles. The solid
lines show the actual attenuation curves, whereas the dotted line
shows the approximation to the real values when the Taylor series
is terminated after the quadratic term. Because of our definition for
the q-value above, all three geometries share the same quadratic
term, hence only one curve is plotted. When the fourth-order
terms are included as well, the curves plotted with dashed lines
are obtained. It is clear that these curves have only a very limited
range of validity beyond what is already provided by the quadratic
term. Further, in this range of validity, the signal attenuation val-
ues for spherical and anisotropic pores are very similar. Therefore,
we conclude that, the Taylor series representation of the MR signal
is unlikely to provide reliable resolution of CSA. Of course, the abil-
ity to incorporate arbitrary q-values has additional benefits. For
example, in highly anisotropic pores, the error introduced by
Fig. 5. The signal attenuation plotted against the dimensionless q-value when the angle b
on the left shows the results at long mixing times; the right panel depicts the signal atten
for the geometries of spherical, ellipsoidal, and cylindrical pores. Ellipsoidal and cylin
respective anisotropic pores. The dotted curve depicts the signal up to the quadratic term
order term is also incorporated, one obtains the signal attenuation curves shown as das
terminating the Taylor series at the fourth-order term is
Oðð2pqaÞ6Þ, where a is the longest end-to-end distance, hence this
error can be very large—larger than some of the terms in the
fourth-order term in highly anisotropic pores.

Now we shall focus on the double-PFG experiment at the long
mixing time ðtm !1Þ regime, and examine the effect of pore
eccentricity on the angular signal profiles. The results for various
values of � for the randomly distributed populations of ellipsoidal
and cylindrical pores are demonstrated in Fig. 6. In these simula-
tions qR0 is fixed at the value of 0.25. The curves plotted in red
show the signal profiles for prolate shaped pores; those in green
depict the signal profiles for oblate shaped pores. Finally, the black
curves in both panels demonstrate the signal for � ¼ 1. Ellipsoids
with an e value of 1 are just spheres. Therefore, no angular varia-
tion is observed, as expected ðr ¼ 1:000Þ. Although very slight
angular variation exists in the simulation of cylindrical pores with
� ¼ 1 ðr ¼ 1:003Þ, the resulting fluctuation is too small and the
corresponding curve is not distinguishable from a constant line.
When the e value is increased, in both geometries, prolate shaped
pores yield larger angular contrast (e.g., in ellipsoidal pores,
r ¼ 1:264 at � ¼ 1000, and r ¼ 1:097 at � ¼ 1=1000). In the case
of prolate geometries, increasing e beyond the value of 15
ðr ¼ 1:258Þ led to only a slight change in the angular profiles. Sim-
ilarly in the case of oblate pores, � values smaller than 0.1 all
yielded approximately the same profiles. These observations sug-
gest that there is a finite range of CSA values that can be extracted
from double-PFG signal at long mixing times. In other words, the
inverse problem of obtaining the CSA value from the double-PFG
signal is ill-posed if the pores are very anisotropic.

So far we discussed only isotropically distributed pores, which
can be seen as the first component in a series formed with spherical
harmonics when more general ensembles are encountered (see Eq.
6). On the other extreme is a population of perfectly coherent aniso-
tropic pores. In this case, the solution is easier to obtain as no orien-
tational averaging is necessary. In the top row of Fig. 7 we show the
signal profiles when an ensemble of ellipsoidal pores is coherently
oriented along the z-direction. In these simulations, the first gradient
is set along the x-direction, and the direction of the second gradient is
specified by the polar angle h, and the azimuthal angle /. We plot the
signal against / for various values of h. Clearly, for coherently ori-
ented pores, the signal does not depend on / at long mixing times
although the angle between the two gradient directions does vary.
However, one obtains different values for different polar angles,
which can be considered a signature for EA. This behavior is very
similar to what is obtained in single-PFG acquisitions and enables
the extraction of the orientation of the pores.
etween the two gradients of the double-PFG experiment (w) was set to 90�. The plot
uation curves when tm ¼ 0. The continuous lines illustrate the correct signal values

drical pore geometries (with � ¼ 4) are obtained by isotropically distributing the
, which, by choice, yields the same values for all three geometries. When the fourth-
hed lines.



Fig. 6. The double-PFG signal attenuation at long mixing times ðtm !1; qR0 ¼ 0:25Þ plotted against the angle between the two gradients (w). The simulated specimen is a
randomly oriented ensemble of ellipsoidal (left) and cylindrical (right) pores with varying values of pore eccentricity, or compartment shape anisotropy. The red and green
curves depict prolate and oblate pore shapes, respectively.

Fig. 7. The double-PFG signal at long mixing times ðtm !1; qR0 ¼ 0:2Þ for spheroidal pores with � ¼ 4. The first gradient is fixed along the x-direction; the orientation of the
second gradient is specified by the polar angle h and the azimuthal angle /. The top panel in the right column depicts the signal profiles for pores coherently oriented along
the z-axis. The left panel in the bottom row shows the signal profiles for an ensemble of pores whose mean orientation is along the z-axis, but suffers from some angular
dispersion. The panel on the right side of bottom row depicts the signal profiles when a bimodal distribution of pore orientations is considered where the two modes are
centered around the y- and z-axes, respectively. The glyphs illustrate the orientation distribution functions assumed in the plots in the bottom row.
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The left panel of the bottom row of Fig. 7 illustrates the corre-
sponding plots for an ensemble of pores whose orientations are
distributed around the z-direction. The underlying orientation dis-
tribution function is described by a second order Cartesian tensor
whose principal eigenvalue was taken to be 5 times the other
two eigenvalues. In obtaining the flm coefficients corresponding
to the Cartesian tensor, the relationships in Ref. [34] were em-
ployed. Clearly, angular features characteristic of CSA start to de-
velop. To understand this, we consider only the curves drawn
with continuous lines, which correspond to h ¼ 90�. In this case,
the angle between the gradients, w, is equal to /. Note that when
h ¼ 90�, the second gradient vector spans the intersection of the
pore wall and the xy-plane. When the pores are coherently ori-
ented, all such cross sections are circular, i.e., they do not possess
shape anisotropy, leading to a constant value for the signal. How-
ever, when there is a distribution of pores, the curve that is defined
by the intersection of the xy-plane and the ellipsoid is, in general,
elliptical. Therefore, the CSA is observed for such ensembles. Final-
ly, in the last panel of Fig. 7, we simulate an ensemble comprising
two fiber bundles, where the average orientations of the two bun-
dles are along the y and z axes, respectively. Such an orientation
distribution function was obtained from an eighth order spherical
tensor, whose elements were computed using the techniques in
Ref. [35]. The resulting angular dependence is due to the superpo-
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sition of the effects of cross-sectional CSA of the bundle along the
z-direction, and the EA of the bundle along the y-direction.

The geometry consisting of isotropically distributed cylinders
with � ¼ 4 and qR0 ¼ 0:2 (r0 ¼ 2:5 lm, L ¼ 20 lm, and
q ¼ 25:7 mm�1) is used to demonstrate the effects of deviations
in the experimental timing parameters from their ideal values.
First, we show the effect of variations in the mixing times. As can
be seen in the top panel of Fig. 8, when tm is short, the bell-shaped
curve characteristic of lA is predicted (l ¼ 1:512 and r ¼ 0:875 at
tm ¼ 1:5 ms). This profile that resembles the � cos w function grad-
ually evolves into a cosð2wÞ-like curve. When long tm-values are
achieved, the correlation within each pore is lost, suppressing the
effects of lA, and curves characteristic of CSA are observed
(l ¼ 1:000 and r ¼ 1:090 at tm ¼ 200 ms). In the second panel of
the same figure the effect of variations in D is shown when tm is
taken to be relatively long. The angular contrast due to CSA is
gradually lost as D is shortened (r ¼ 1:090 at D ¼ 200 ms, and
r ¼ 1:021 at D ¼ 15 ms). However, prolonging the D values
Fig. 8. In all plots, an ensemble of randomly distributed cylindrical pores with � ¼ 4
is considered. The signal values at qR0 ¼ 0:2 are plotted against the angle between
the two gradients of the double-PFG experiment. Top panel: the effect of varying
the mixing time when d ¼ 1 ms, and D ¼ 200 ms. Middle panel: the effect of
variations in the diffusion pulse separation when tm ¼ 200 ms, and d ¼ 1 ms.
Bottom panel: the effect of varying the diffusion pulse duration when the other
timing parameters are set to tm ¼ D ¼ 200 ms.
beyond 100ms does not create a significant change in the angular
pattern. Finally, in the last panel we show the effects of variations
in the diffusion pulse duration. A clearer delineation of the angular
variations is possible if short gradient pulses are employed
(r ¼ 1:091 at d ¼ 0:001 ms, and r ¼ 1:005 at d ¼ 150 ms). Perhaps
the most important observation in this panel is that even 1ms
pulses appear to create a significant change in the signal profiles
supporting the view that if experimental timing parameters are
not considered, deviations from true values are unavoidable even
when 1ms diffusion pulses are used.

5. Discussion and conclusion

The double-PFG observation of diffusion in anisotropic pores
has been addressed to some extent in Ref. [21]. There, explicit rela-
tionships for the quadratic term of the signal decay was employed
for isotropic compartments in one, two, and three dimensions; in
all cases it was possible to denote the compartment size via a sin-
gle variable. In addition, the solution for two-dimensional isotropic
pores (circles) was combined with the solution for free diffusion to
obtain the relevant expressions for infinitely long cylinders.
Clearly, such a geometry can be considered to be a limiting case
of the cylindrical as well as ellipsoidal pore shapes treated in this
article. However, since only one size-variable was employed, CSA
cannot be quantified using the formulations in Ref. [21]. One of
the goals of this article was to expand the model to enable the esti-
mation of CSA directly from double-PFG data. As discussed above,
there is a limit to the anisotropy that can be quantified using the
methods presented in this article and the above formulations are
relevant for moderately anisotropic pores. Therefore, when the
pores are very anisotropic, the techniques presented in Ref. [21]
can also be employed to assess the diameter of the fibers.

In a recent study, the estimates for pore size were obtained
from the quadratic term of the double-PFG MR signal attenuation
[36] at short mixing times. Such an approach has serious limita-
tions for at least two reasons. (i) The experiments are assumed to
be performed in ideal experimental parameters. However, a more
recent study [22] decisively established that in small pores, such
as those relevant in the examinations of biological tissue, the finite
duration of the pulses creates significant deviations in the size esti-
mates; �20% deviations were reported in 5 lm diameter tubes
when the pulse duration was set to 7.5 ms. (ii) Although the tech-
nique in Ref. [36], and its more recent variant in Ref. [37] are said to
hold for arbitrary pore shapes, the estimated quantity, hr2i can be
interpreted appropriately only if the underlying geometry is
known. As we showed in the definition of a unified q-value above,
identical values of hr2i, hence the quadratic term, are possible in
spherical and anisotropic pores. As the pore shape gets elongated,
pores enclosing smaller volumes yield the same hr2i value. There-
fore, the hr2i value estimated from the quadratic term of the signal
decay has limited value by itself except when isotropic pores are
considered as in Ref. [21]. In fact, the treatment in [21] does not
suffer from the need to perform the experiment with ideal exper-
imental parameters (point (i) above) either as all experimental
timing parameters are incorporated. It should be noted that
although the small q-value assumption employed in Ref. [21] as
well as [36] can lead to some bias, this bias can be removed simply
by computing the decay rate along each direction near the q ¼ 0
point; this scheme was employed in Ref. [22]. An even better alter-
native that does not require acquisitions at different q-values is the
scheme in Ref. [24]. Clearly, the incorporation of two size parame-
ters, as was done in this work, enables a better interpretation of the
underlying geometry for a greater range of pore shapes. Moreover,
the assumption of cylindrical pore shape provides the further
advantage that all experimental parameters can be taken into
account.
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The problem of characterizing the CSA becomes tractable when
the pores are assumed to be ellipses or cylinders. However, incor-
poration of the experimental parameters was presented only for
cylindrical pores. Figs. 4–6 suggest that the predicted signal pro-
files for these geometries are very similar especially when the q-
value is not very high. An important special case involves the
spherical pores, or equivalently ellipsoidal pores with � ¼ 1.
Although it is not a special case of cylindrical pores, the simula-
tions of cylindrical pores with � ¼ 1 yield approximately constant
signal profiles. This result suggests that if the specimen is com-
posed of spherical compartments, and the model of cylindrical
compartments was fitted, the estimate for L would be approxi-
mately equal to 2r0. This result justifies the definition � ¼ L=ð2r0Þ
for cylindrical pores. Based on the resemblance between the pro-
files for ellipsoidal and cylindrical pores, we can say that a signal
profile obtained from cylindrical pores can be fitted with a model
based on elliptical pores and vice versa. In most biological speci-
mens, e.g., in brain white-matter or in elongated yeast cells, sharp
boundaries such as those in the capped cylinder geometry are
highly unlikely. However, in the micrographs obtained from these
cells, the cross sectional diameter of the cells does not seem to vary
significantly except at the very ends, hence resembling the cylin-
drical geometry. Although the actual shape of the compartments
in real life specimens will certainly be more complicated than
the shapes that can be handled analytically, we expect that for a
fairly large class of shapes, reasonable approximations can be
achieved if the pores are assumed to be cylindrical or ellipsoidal.

In the quest to characterize anisotropy at different length scales,
an earlier work [38] exploited the local anisotropy induced by mac-
roscopic interfaces to map orientations perpendicular to the
boundaries enclosing pores that are larger than the voxel size
(see Ref. [39] as well). To this end, single-PFG acquisitions are
appropriate. Such anisotropy is the same kind of anisotropy re-
ferred to as lA in this article although the pore sizes may be much
smaller than the voxel size. Because the relevant length scale for
this kind of anisotropy to emerge is on the order of the mean
squared displacements of the diffusing molecules, the term micro-
scopic anisotropy (lA) was used to refer to such anisotropy [21]. At
a much coarser length scale, the coherence of the elongated pores
gives rise to ensemble anisotropy (EA). In this article, anisotropy at
an intermediate length scale (CSA) as reflected on double-PFG
measurements was addressed, filling in the important gap between
the problems tackled in previous publications.

Previously, the scaling characteristics of diffusion within disor-
dered media were characterized by varying the diffusion pulse sep-
aration in single-PFG acquisitions [40]. Clearly, varying the
gradient orientation in double-PFG acquisitions provides an alter-
native means to procure information at different length scales.
One route to extract such information involves fitting the model
to data. For example, if the cylindrical geometry is chosen, then
the unknowns are the flm coefficients characterizing the EA at the
gross length scale, and r0 and L at the compartmental length scale,
which provide an estimate for pore volume as well as eccentricity,
or CSA. Note that although acquiring the data at long mixing times
may be preferred as it provides a signature for CSA, the estimations
of the same quantities can be performed at short and intermediate
values of the mixing time as well.
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