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Introduction 

Micro- and nanoindentation are common techniques in the study of the 
local mechanical behavior of synthetic and biological gels.  In particular, the 
high-resolution imaging ability of the AFM has been exploited to generate 
localized elasticity maps of tissues and cells,1 and even to chart the 
spatiotemporal evolution of stiffness during cellular processes.2  Building on 
previous work in which we developed robust, automated strategies for 
analyzing AFM force data,3 we introduce analytical models and approaches 
that further extend the capabilities of these techniques beyond the 
measurement of small-strain mechanical properties.  These recent 
developments include contact equations for modeling large-strain indentation 
of hyperelastic materials and a method of mapping the swelling and elastic 
characteristics of gel samples.  The refined contact equations are important in 
describing the indentation of many biological gels that are intrinsically 
nonlinear elastic, such as the cell cytoplasm and cartilage extracellular matrix.  
High-resolution osmotic modulus maps build on elasticity measurements to 
reveal swelling and volume-preservation tendencies in gels, and enhance our 
understanding of local inhomogeneities. 
 
Experimental 

Casting of Synthetic Gel Samples. Poly(vinyl alcohol) (PVA) gel 
cylinders (1 cm diameter, 1 cm height) and films (> 2 mm thick) for 
macroscopic displacement-controlled compression and AFM nanoindentation, 
respectively, were cast from aqueous PVA solution (MW 70,000-100,000; 
Sigma) by crosslinking with glutaraldehyde at pH ~ 1.5.  An appropriate 
amount of crosslinker (one unit per 100 monomer units) was added to ensure 
that all polymer chains were attached to a continuous network structure. 

Murine Articular Cartilage.  Sixty-micrometer thick cartilage samples 
were transversely sectioned from the femoral heads of one-day old wild-type 
mice using a microtome.  Samples were lightly fixed in 3% formaldehyde, 
rinsed thoroughly in PBS, and frozen in embedding medium prior to 
sectioning.  Slices were immediately transferred to glass slides, where the 
embedding medium was allowed to dry and bond the tissue samples to the 
glass surface.  The samples were then rinsed several times with a buffer 
solution (10 mM HEPES, 2 mM CaCl2, 150 mM NaCl; pH 7.5) and 
equilibrated to room temperature. 

Compression of Gel Cylinders. A bench top materials testing system 
(Stable Micro Systems, UK) was used to perform displacement-controlled 
compression of the PVA cylinders at a ramp speed of 1 mm/s.  Volume 
change and barreling were visually monitored and found to be negligible.  The 
shear modulus was determined by fitting the engineering stress-stretch data 
with the uniaxial hyperelastic equations listed in the first column of Table 1.  
Assuming material incompressibility, the infinitesimal Young’s modulus (E0) 
was then calculated by multiplying the shear modulus by a factor of three.  
Triplicate samples, each tested three times to ascertain elasticity, were used. 

AFM Microindentation.  For the synthetic gels, general-purpose silicon 
nitride tips with 5.5 µm glass or 9.6 µm polystyrene beads attached were used 
for the AFM measurements, performed using a commercial AFM (Bioscope I 
with Nanoscope IV controller, Veeco).  Polystyrene beads of 5 µm were used 
for the cartilage.  The spring constants of the cantilevers were measured by the 
thermal tune method while bead diameters were measured from images 
acquired during the attachment process.  A raster scanning approach (“force-
volume”) was applied to automatically perform indentations over an area of ~ 
20×20 µm, at a resolution of 16×16 (256 total indentations) for the PVA gels 
and over an area of ~30×30 µm at a resolution of 32×32 (1024 indentations) 
for the native cartilage.  In all measurements, a tip velocity of approximately 
814 nm/s, known from previous studies to minimize viscoelasticity in the 
samples, was applied.  For the mouse cartilage, surface topography images 

were used to determine whether each measurement location corresponded to 
the extracellular matrix or to the cells.  In the case of the engineered tissue, the 
dataset consisted of individual indentations acquired at random locations over 
the sample. An optimization approach coded in Matlab and based on the 
equations from Table 1 was used to automatically process each dataset and 
extract values of Young’s modulus.3 

 
Table 1.  Force-indentation Relations For Some Hyperelastic Models1 
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E0 (infinitesimal Young’s modulus), ν (Poisson’s ratio), a (contact radius) 
Abbreviations: MR (Mooney-Rivlin), 2p (2-term reduced polynomial), Og 
(Ogden), Fu (Fung), VdW (van der Waals), GD (Gaylord-Douglas), TG 
(Tschoegl-Gurer) 
 
Results and Discussion 

Compression and Microindentation of PVA Gels.  In compression, 
strain stiffening of the gel cylinders was evident in the stress-stretch curves, 
and well-captured by each of the models listed in Table 1.  The same was true 
in indentation, with each hyperelastic force-indentation equation yielding 
good fits of the AFM data and Young’s modulus values comparable to those 
from compression.  A sample fit of the compressive stress-stretch behavior for 
a 6% w/w gel is shown in the inset to Figure 1.  For the 6% gels, compression 
yielded values of E0 between 19.8 kPa and 20.7 kPa for the various models 
while indentation yielded E0 = 18.1 – 22.9 kPa.  

Microindentation of Cartilage.  The main constituent of dry cartilage is 
type II collagen, which exists in the form of a dense network of fibrils that 
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forms the underlying structure of the extracellular matrix.  Similar to other 
load-bearing soft tissues, articular cartilage has a charged nature that is 
responsible for its swelling behavior and compressive resistance.  As 
essentially a compressive process, indentation provides a measure of the latter 
property.  AFM force data showed characteristic strain stiffening in the mouse 
cartilage that was captured only by the Fung and Ogden equations, which are 
representative of exponential and power law forms of strain energy functions, 
respectively.  Figure 1 shows sample fits while a summary of results is 
presented in Table 2.  The appropriateness of the Fung and Ogden models 
was expected on the basis of their demonstrated success by many researchers 
in describing the load-deformation behavior of various soft tissues.4,5  In each 
of the two models, E0 is a measure of stiffness at low strain while stiffening is 
represented by the parameters α (Ogden) and b (Fung). 

 

 
Figure 1.  Sample datasets from the compression of PVA gels (inset; σ: stress, 
λ: stretch ratio) and indentation of cartilage extracellular matrix.  Fits to the 
data are also shown. 
 

Table 2.  Results Of The AFM Microindentation Of Mouse Cartilage 

Model E0 [kPa] 
(mean±std. dev.) Mean R-squared 

Hz 97.8±16.8 0.876 
NH 99.9±19.1 0.898 
MR 95.2±18.5 .0.922 
2p Failed - 
Fu 19.6±2.3 0.999 
Og 19.7±3.4 0.999 
VdW 96.3±18.6 0.887 
GD 98.8±18.9 0.885 
TG 98.0±18.8 0.885 
Hz: Hertz.  Data from ten randomly selected samples 

 
Generating Osmotic Modulus Maps.  In polymer physics, the osmotic 

modulus (K) is defined as6 K = c(∂ω/∂c), where c is the polymer concentration 
and ω is the swelling pressure in the gel.  The latter quantity is the difference 
between the osmotic pressure that acts to cause expansion, and the contractile 
elastic pressure that is represented by the shear modulus.  Scaling theory 
predicts, and experiments have verified, that both the osmotic and elastic 
pressures depend on c.6,7 We express the swelling pressure in the form ω = 
A(cn – ce

n-mcm), where ce is the concentration at the fully swollen gel and A, m, 
and n are constants for a particular solvent-gel combination.  In a good 
solvent, n  = 2.25 and m = 1/3.7,8 

Osmotic modulus mapping of PVA gels in solvents of different quality 
revealed variations in K that were an order of magnitude larger than variations 
in G0.  Here, we discuss results from measurements on cartilage.  Figure 2 
shows maps of the shear modulus (G0 = E0/3, assuming incompressibility) 
map of a cartilage sample from AFM microindentation and the corresponding 

osmotic modulus map.  The constants A = 4×105 kPa and n = 2.68 were taken 
from the literature for collagen gels.9 It is evident that the local variation in K 
is significantly greater than the variation in G0.  It is also obvious that the 
influence of concentration on K is dramatically greater than on G0.  The 
osmotic modulus therefore serves as a better measure of the local 
inhomogeneity in a gel.  Moreover, because K is derived from the swelling 
pressure, it represents the resistance to compressive deformation.  Large 
variations in this quantity indicate significant differences in recovery from 
compression.  This is an important consideration in articular cartilage of 
weight-bearing joints, which can experience large amplitude repetitive loading 
during physical activity and for which rapid recovery of the bulk tissue is 
crucial to normal function. 
 

 
Figure 2.  Shear (top) and osmotic (bottom) modulus maps of the region of 
extracellular matrix indicated by the dashed box in the topography map. 
 
Conclusions 

Recent developments in the indentation of gels allow us to better 
understand their load-deformation and swelling behavior.  This is of great 
significance in the study of biological tissues, whose inhomogeneity is 
manifested across different length scales.  The two advances introduced here 
enable us to exploit the high-resolution capabilities of the AFM in studying 
the properties of gels at the local level. 
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