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Communication

The Activating Function for Magnetic Stimulation
Derived From a Three-Dimensional Volume
Conductor Model

Peter J. Basser, Ranjith S. Wijesinghe, and Bradley J. Roth

Abstract—A three-dimensional volume conductor model of magnetic
stimulation is proposed that relates transmembrane potential of an axon
to the induced electric field in a uniform volume conductor. This model
validates assumptions used to derive a one-dimensional cable model of
magnetic stimulation (Roth & Basser, I[EEE Trans. Biomed. Eng., vol.
37, pp. 588-597, 1990) of unmyelinated axons. The three-dimensional
volume conductor model reduces to this one-dimensional cable equa-
tion forced by the activating function, —dE’/dz.

INTRODUCTION

We recently proposed a model of magnetic stimulation of an un-
myelinated nerve fiber that predicts where and when excitation oc-
curs [1]. It consists of a one-dimensional cable equation that is
forced by a term that is analogous to the activating function for
electrical stimulation with extracellular electrodes [2]. While neural
stimulation is caused by a three-dimensional electric field distri-
bution, the response of the nerve is generally described by a one-
dimensional cable model. The activating function in the one-di-
mensional cable equation should represent the action of this applied
electric field. We show how to reconcile these one- and three-di-
mensional representations of nerve stimulation and derive an acti-
vating function for magnetic stimulation that is consistent with both.

In this communication, we present a three-dimensional volume
conductor model of magnetic stimulation in which the induced
electric field and its resultant transmembrane potential distribution
along an axon are derived analytically. We show that this three-
dimensional model of magnetic stimulation reduces to a one-di-
mensional cable equation [1] whose activating function is identical
to one that we proposed previously, —dE5/dz.

We also use the three-dimensional volume conductor model to
assess the validity of several simplifying assumptions made in de-
riving our original cable equation [1]. One is that the electric field
within the axon is axial; another is that the field in the membrane
is radial. These have been validated for a cable model describing
propagating action potentials [3], but not for magnetic stimulation.
We also assumed that the electric field in the membrane due to
induction is negligible compared to the electric field due to charge
separation. Finally, we made the unintuitive assumption that the
extracellular potential is negligible, so that transmembrane poten-
tial equals intracellular potential.
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Fig. 1. Schematic diagram of the axon and the filament of magnetic flux.

Fig. 2. Schematic diagram of the electric field lines induced by the fila-
ment of magnetic flux along a plane through the center of the coil for
d¥ fdt > 0.

MODEL

We consider a single, unmyelinated axon with radius b and in-
tracellular conductivity o;, having a membrane of thickness d and
conductivity g,,. It is threaded through a wire-wound toroid of ra-
dius a with a high-permeability core (Fig. 1). The axon lies in an
unbounded, homogeneous volume conductor of conductivity g,,.
Current passes through the toroid winding creating a time-varying
magnetic field confined to the core, inducing an electric field in the
volume conductor surrounding both the axon and toroid (Fig. 2).
We model the toroidal coil as a filament of magnetic flux, ¥ (1),
produced by current in the winding. Also, we assume that the cur-
rent in the winding changes slowly enough so that skin depth and
propagation effects are negligible. Cylindrical coordinates, p, 6,
and z, are used. The axon lies along the z-axis, which coincides
with the axis of the coil; p measures the radial distance from the
axon’s center. The assumption of symmetry with respect to the azi-
muthal angle # simplifies the description of this three-dimensional
volume conductor problem to a two-dimensional one.

The configuration of the nerve and filament of magnetic flux
shown in Fig. 1 is similar to experimental preparations used by
Maass and Asa [4], Ueno er al. [5], [6], Riecken [7], and Mc-
Carthy and Haradem [8] to stimulate axons; it is also used to mea-
sure action currents by detecting their associated magnetic field [9].
This coil geometry is different than that used in clinical applica-
tions of magnetic stimulation. In this note, however, we are pri-
marily interested in the mechanism of stimulation, which should
be the same for various applications.
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The electric fields in the bath and axon have two sources: a time-
varying magnetic field and charge. We first consider the inductive
contribution. In our example, the electric field produced by elec-
tromagnetic induction is the “‘applied electric field”* because it is
the electric field that would exist in the bath if the axon were not
present. This electric field cannot be expressed as the gradient of
a scalar potential [10]. The electric field induced during magnetic
stimulation has been measured by many authors using a bipolar
electrode probe and an oscilliscope. However, these authors are not
measuring a potential difference, but instead a line integral of the
electric field. In the presence of a time-varying magnetic field, this
distinction is important [11]. Some confusion exists because models
of electric stimulation using extracellular electrodes were cast only
in terms of the potential [2], [12]. Our model of magnetic stimu-
lation, and the activating function that we derive, is cast in terms
of the electric field and is inclusive of but not equivalent to the
previous models.

There is an analogy between an electric field produced by a time-
varying magnetic flux and a magnetic field produced by a current.
This follows from the formal analogy between Faraday's law of
induction and Ampere’s law of magnetostatics. Jackson [13, p. 206]
provides expressions for the components of the magnetic field at
position p, z due to current flowing in a circular loop of radius a
lying in the plane z = 0. We use this expression to provide the
radial and axial components of the applied electric field, E4(r, p,
z) and E% (1, p, 2), induced by a loop of time-varying magnetic flux,
W (r). Fourier transforms of these field components with respect to
the axial coordinate, z, are

where we have used the facts that lim, .o ¢; and lim, . , ¢, are
finite. We define the transmembrane potential at p = b as the dif-
ference between intra- and extracellular potential:

(1, k) = &,(t, b, k) — ¢,(t, b, k). (5)

The functions «(r, k) and B(¢, k) above must be determined from
the boundary conditions at the membrane, i.e., the normal com-
ponent of the current is continuous at the interfaces between the
intracellular space and the membrane, and between the extracel-
lular space and the membrane:

do; (I p. k)

o; (eﬂ(r, b, k=

p=b

(e;;(r b, k) + 2ult k)) ()
d
o= h)

a¢,,(: p. k)
= (ef:(:, b, k) + %’”) D

a, (eﬂ(!, b, k) —

Zhang [14] considered the case in which the membrane has finite
thickness, but we take the membrane thickness, d, to be so small
that we can treat it as a high resistance surface separating the in-
tracellular and extracellular volumes. We also neglect membrane
capacitance (steady state simulation), although it can easily be in-
cluded above by using Fourier transforms in time and a complex

If we solve (3)-(7) for the two unknown functions, «(r, k) and
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These expressions for & and 3 can be used in (3), (4) to determine
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where k is the spatial frequency and J;, I;, Kj, and K, are modified
Bessel functions.

The second contribution to the electric field arises from charge
separation across the axon membrane. An electric field caused by
charge can be expressed as the gradient of a scalar potential. The
potentials inside, ®; (1, p, 2), and outside, ®,(1, p, z), the axon obey
Laplace’s equation, so that their Fourier transforms (with respect
to z), ¢, and ¢,. can be written in terms of Bessel functions in p
[13, p. 107]:
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Next we use (1) and (2) to express the Fourier transform of the
applied radial electric field in (10) in terms of the Fourier transform
of the applied axial electric field,

ikl,(|k| b)

mei(r. b, k). (11)
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TABLE I
UNMYELINATED AXON

d 0.006 -
b 3 pm

o; 2 S/m
o, 2 S/m
e 62.5:107 S/m
A 0.67 mm

The transmembrane potential is now written as the product of a *‘transfer function,”’ H, ek, b), and the axial electric field

(] o %) (1 ”y U:'l](lk‘b)KU(|k|b))
ikt (k| b) a; a, Jo([k| YK, (| k| b)

m ¥ k =
B, (1, k) k| Io(|k| &) o, (1

Uid

=. [11111.‘1|5.'lir('(:1 b)f;(f, b! k)'

We can draw several general conclusions by examining the form
of the transfer function in (12). First, o,, is much smaller than g,
(by a factor of about 107, Table I). Thus, (1 — 0,,/0;) = 1. This
is tantamount to assuming that the electric field in the membrane
due to magnetic induction is negligible compared to the electric
field in the membrane due to charge, justifying one of our assump-
tions. Second, Kleinpenning and van Qosterom [15] interpreted the
fractor o; 1, (|k| b) Ko(|k| b) /a, Io(|k| b) K, (|k| b) as the ratio of extra-
cellular to intracellular resistance along the axon. Because the Fou-
rier transform of the applied electric field, ¢, (k), contains negli-
gible power at spatial frequencies near to and above the inverse
axon radius, i.e., |k|b << 1, and 0,/ 0, is generally not too large,
the ratio of extracellular to intracellular resistance is on the order
of (|k| b)*, which is much less than one. This supports another as-
sumption that the extracellular potential is negligible during mag-
netic stimulation. Note that this assumption does not imply that the
extracellular electric field is negligible. Instead, it means that the
extracellular electric field is approximately equal to the applied
electric field, and that only that part of the extracellular electric
field produced by charge separation on the cell membrane can be
ignored.

We can further simplify (12) by substituting the length constant,

A,
N /L"db (13)
20,

for factors containing the membrane conductivity. Using all the
simplifying assumptions discussed above, expanding the transfer
function in (12) in a power series in |k| b, and retaining the lowest
order term, we find that

2

ik

Ot k) = W—+1

ealt, b, k) = H oo tk, bYei(t, b, k). (14)
Equation (14) is the spatial frequency domain (k space) represen-
tation of the steady-state, forced cable equation that we previously
derived [1] to describe magnetic stimulation of an axon. This is
seen by taking the inverse Fourier transform of (14), obtaining

a’® aE

“N =+ ¢, = N2 15

a2 a2 (15)
It is easy to show that if the membrane had capacitance, then the
left-hand side of (15) also would contain the term 7 &, /dt where
7 is the membrane time constant.

i 5,11(|k‘b)Kn(1k|b)> 4 ‘kl Li(|k| b)
o, Jo(|K| BY K\ (|k| b)

es(t, b, k)
Io(|k| b)
(12)

REsSULTS

To see how well the approximate activating function,
—dE% /dz, agrees with the analytical one, we compare the magni-
tude and phase of the transfer functions, H,.,ic(k. b) from (12)
and H,,..(k, b) from (14), which are plotted together in Fig. 3.
We use parameters in Table I for an unmyelinated axon [16] with
a length constant of 0.67 mm. The toroid’s radius is 2 mm. The
flux changes from 0 to 1 T mm? in 100 ps, so that the peak rate of
change of flux is 0.01 T m?/s. Agreement between analytical and
approximate transfer functions is excellent. Maximum deviations
appear to increase with k% but remain less than 0.8% at k = 16
mm™'. Therefore the exact and approximate curves are virtually
indistinguishable in Figs. 3-5.

The resulting analytical and approximate transforms of the trans-
membrane potential are plotted as a function of & in Fig. 4.

The real part of the inverse Fourier transform of ¢,,(k) is the
transmembrane potential distribution, ®,,(z). The approximate and
exact transmembrane potential distributions, computed from (12)
and (14) using an IFFT algorithm, are shown in Fig. 5.

DiscussioN

This derivation of the activating function is also valid for my-
elinated axons with the proviso that \ is interpreted as the effective
space constant, given by the space weighted average of the nodal
and internodal impedances [17], [18]. There also must be negligi-
ble power in ej (k) for |k| < 1/\ in addition to the requirement
that |k] << 1/b.

Magnetic and electrical stimulation depolarize the axon in the
same way. Our description of magnetic stimulation would be ex-
actly analagous to the description of electric stimulation presented
by Rattay if he had cast his activating function in terms of the ap-
plied electric field instead of the extracellular potential. If E, were
produced by distant electrodes instead of a time-varying magnetic
field this derivation would be unchanged. Thus, this analysis ver-
ifies the one-dimensional cable model of electrical stimulation pro-
posed by Rattay [2]. Also, any contribution of charge accumulation
on distant tissue surfaces [19] can be included easily in the acti-
vating function for magnetic stimulation when it is cast in terms of
the applied electric field.
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Fig. 3. The (a) magnitude and (b) phase of the transfer function between
the axial electric field and the transmembrane potential as a function of k
with the exact and approximate solutions, (12) and (14), superimposed.
Parameters in Table 1 for an unmyelinated axon are used to construct this
figure.

Tem(k) (m¥—mm)

—i=k (1/mm)
4

Fig. 4. The real part of the Fourier transform of transmembrane potential
as a function of k with the exact and approximate solutions, (10) and (14),
superimposed. Parameters in Table I for an unmyelinated axon are used to
construct this figure.
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Fig. 5. The transmembrane potential, V,, = ®,,(z), as a function of the
axial coordinate, z, with the exact and approximate solutions superim-

posed. These are obtained by taking the real parts of the inverse Fourier
transforms (IFFT) of (12) and (14) using the parameters in Table I.

The magnitude of the transmembrane potential is more than 3
factor of ten below rheobase threshold potential of both myelinated

and unmyelinated axons. The induced transmembrane potential de-

pends on parameters of the nerve and the toroid that we selected in
Table I. For example, increasing the axon diameter will increase
transmembrane potential. Also, the peak magnetic flux of 1 T m?
was obtained by assuming a 1 T magnetic field in a core whose
cross-sectional area is 1 mm?. If the cross-section were larger, the
flux would also increase, and so would the induced transmembrane
potential; however, cross-sectional area cannot be increased tog
much without violating our assumption that the electric field in the
nerve is caused by a filament of flux. These considerations suggest
that electromagnetic induction alone may be responsible for stim-
ulating larger axons using an appropriate toroidal geometry. It is
also possible that stimulation of the nerve in the bath may be caused
or enhanced by another mechanism. One reasonable proposal of-
fered by McCarthy and Haradem is that capacitive currents flowing
between an unshielded coil and the ground electrode contribute to
stimulation [8].
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