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1 Introduction 
OUR GOAL is to explain the remarkable observation that 
myelinated axons can be stimulated by electromagnetic 
induction (BICKFORD and FREMMING, 1965; POLSON et a/. 
1982). It is possible to excite a neuron by passing a time-
varying current through a wire coil (Fig. 1). Magnetic 
stimulation, as this is sometimes called, is noninvasive and 
relatively painless; it is useful in diagnosing neurological 
disorders such as multiple sclerosis, and for evoking motor 
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responses (HALLETT and COHEN, 1989). Although com-
monly used for transcranial activation of the cortex, elec-
tromagnetic stimulation has not gained wide acceptance 
for peripheral nerve stimulation, in part, because of uncer-
tainty in the site of excitation (EVANS et al. 1988; CHOKRO-
VERTY, 1989). 
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Fig. 1 	 Schematic diagram of the cylindrical limb, nerve axon and 
stimulating circuit. The coil radius rc is 4·5 em and the 
limb radius is 3 em. When S is switched to the left, the 
capacitor C charges to a voltage V0 . When S is to the 
right, the capacitor discharges through a resistance R and 
inductance L, creating the current pulse I ( t) in the coil 

In this paper we present a mathematical model of elec-
tromagnetic stimulation of a mammalian peripheral nerve 
axon within a limb. We calculate the electric field induced 
within a cylindrical volume conductor and the resulting 
transmembrane potential along an axon. This model pre-
dicts the location of the volume of stimulation within a 
limb as well as the dependence of threshold stimulus 
strength on pulse duration and axon diameter. Finally, we 
derive a simple relationship between the dimensionless 
stimulus strength and pulse duration which concisely sum-
marises the scaling laws governing the threshold response 
of the axon. 

2 Methods 
This description of electromagnetic stimulation of an 

axon consists of three parts. The current in the stimulating 
coil is predicted by an RLC circuit model. The electric field 
induced in a cylindrical limb is calculated using Maxwell's 
equations (ROTH et al., 1990). The distribution of trans-
membrane potential along the axon is determined from a 
cable model. The coupling between the induced electric 
field and the transmembrane potential appears as a single 
term in the cable equation, a term that we previously 
derived to describe stimulation of unmyelinated axons 
(Rom and BASSER, 1990). To represent a myelirutted axon, 
we use a cable model whose nodal membrane dynamics 
were measured by CHIU et al. (1979), and anatomical 
scaling relationships derived by RuSHTON (1951) for axons 
with different diameters. 
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2.1 	 The current pulse waveform 
In most commercial electromagnetic stimulators, a 

current pulse l(t) is generated by discharging a capacitor C 
whose initial voltage is V0 through a coil having resistance 
R and inductance L (Fig. 1). If the RLC circuit is over-
damped, dl(t)/dt is given by 

dl(t) V-d =-0 e-w ( 1 W1 . )
t cosh (w2t)-- smh (w2 t) (1)

t L W2 

where the frequencies w1 and w 2 are 

1 ~ 1 
w = and w = J(~)

2 
(2)

2L 2 2L LC 

Table 1 contains the values of R, L and C used in these 
calculations. They approximate the current waveform of 
an existing magnetic stimulator (BARKER et al., 1985). 

Table 1 Values used in the models 

Current stimulator model: 
R stimulating circuit resistance 0·470 
L stimulating coil inductance 20,uH 
C stimulating circuit capacitance 3100,uF 
V0 voltage across capacitor plates 2000V 
Physical variables: 
x distance along the axon axis 

time 	
em 

t ms 
V(x, t) transmembrane potential mV 
ejx, t) total electric field along axon axis mvem- 1 

/(t) stimulating coil current A 

Axon model:  
EN• sodium Nernst potential @ 37°C 35·35mV  
EL leakage Nernst potential@ 3TC -80·01mV  
gN• sodium conductance 1445msem- 2  

gL leakage conductance 128msem- 2  

c. nodal capacitance 2·5,uFem- 2 

p. resistivity of axoplasm 5·47 X 10- 2 kQ em 
Pmye resistivity of myelin 7·4 x 10~ kQ em 
K dielectric constant of myelin 7 
e0 permittivity of a vacuum 8·85 X 10- 8 ,uFem- 1 

{J width of node of Ranvier 1·5 X 10- 4 em 

The induced electric field within the limb has the same 
time course as dl(t)/dt (RoTH, et al., 1990). Accordingly, we 
define the stimulus strength so that it is proportional to 
the maximum rate of change of the current in the coil, 
V0/L. Furthermore, the stimulus duration r, is defined as 
the elapsed time until the first zero-crossing of dl(t)/dt. For 
the overdamped RLC circuit given in eqns. 1 and 2, the 
stimulus duration is 

r = _1_ In (w1 + w2) 
c 2w2 w1 - w2 

(3) 

Figs. 2a and b show J(t) and dl(t)jdt, respectively, as func-
tions of time for the stimulator described by eqn. 1 and the 
parameters given in Table 1. The stimulus duration r, is 
also shown in both figures. 
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Fig. 2 (a) Current flowing in the stimulating coil 1 ( t) and (b) its 
time derivative dl(t)/dt as functions of time. The rate of 
change of current is positive until the current reaches its 
maximum value at t = T,. Stimulus strength is proportional 
to dl(O}/dt 

2.2 	 The electric field induced in a cylindrical limb 
The electric field distribution e induced in a cylindrical 

limb depends on the coil current, geometry and its orienta-
tion with respect to the limb. It is computed by adding the 
electric field due to electromagnetic induction EA and the 
electric field due to the induced charge distribution at the 
air/tissue interface Eq, (RoTH et al., 1990). The former is 
calculated by approximating the circular stimulating coil 
as a polygon and then summing the induced electric field 
produced by each line segment (COHEN et al., 1990a). The 
latter is found by solving Laplace's equation in a homoge-
neous, cylindrical volume conductor of radius 3 em, using 

a finite-difference technique, with 17 points in the radial 
direction (separated by 0·1875 em), 64 in the angular direc-
tion (separated by 5·625°) and 129 in the axial direction 
(separated by 0·1875 em) (RoTH et al., 1990). For a uniform 
volume conductor, the electric field is independent of the 
conductivity of the limb. As shown in Fig. 1, the axon is 
oriented parallel to the axis of the limb. The 14-turn stimu-
lating coil has a radius r, of 4·5 em and lies 0·5 em above 
the limb's surface, as shown in Fig. 1. Once the electric 
field within the limb is known its effect on axon trans-
membrane potential must be ascertained. 

2.3 Myelinated axon model 
A diagram of a myelinated axon is given in Fig. 3a. It 

consists of segments of active membrane, nodes of Ran vier, 
that are b wide and are spaced a distance A apart. Each 
node is modelled as a discrete current source (Fig. 3b) that 
contributes 

2 av)
nd;b( gNam h(V- ENa) + gL(V- EL) +en at (4) 

to the membrane current. The gating parameters m and h 
are governed by the first-order kinetic equations 

and 

(5) 
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The voltage-dependent rate constants are given (in ms- 1
) 

by 

126 + 0·363V 

am(V)= (-(V+49)) 

1·0+exp .5 3 
(6) 

Pm(V} = (V + 56·2) 
exp 4·17 

(7)
15·6  

ph(V) = ( (V + 56)) 
1 + exp -

10 
where V is the transmembrane potential (in mV). The 
nodal capacitance per unit area c", the sodium conduc-
tance per unit area 9Na, the leak conductance per unit area 
gL, the sodium Nernst potential ENa• the leak Nernst 
potential EL and the channel gating kinetics are based on 



data obtained by CHIU et al. (1979) from voltage clamp 
experiments with rabbit myelinated axons. These values 
were taken from SWEENEY et al. (1987)*

 There are several differences between our work and the abstract by 
swEENEY eta/. (1987). First, they express the units of g,;. and gL in 
'Sjcm 2 

'; but to be consistent with CHIU et a/. (1979) the same 
numbers should have been given in 'mSjcm 2

' (e.g. the correct 
maximum sodium conductance per unit area is 1445 mSjcm 2). Sec
ondly, in the definition of am, SWEENEY et a/. express the argument of 
the exponential as '-{V+49)j53', whereas it should be given as 
'-(V + 49)/5·3'. 

, who adjusted 
Cmu et al.'s (1979) results from 14° to 37oC. No potassium 
current is included in expression 4, which is consistent with 
the observation by Cmu et al. (1979) that potassium chan-
nels are absent from the nodal membrane of mammalian 
myelinated axons. 

The nodes are joined by lengths of passive axon which 
are insulated by a myelin sheath (Fig. 3a). In the inter-
nodal region, the transmembrane potential is governed by 
a cable equation 

2 o2 V av 2 oex(x, t) 
Amye ox2 - tmye dt- (V- V,.) = Amye OX (8) 

The space constant of the internodal region Amye is defined 
by 

A =d. Pmye (9)
mye 	 ' 8p n d. 

a 	 ' 

I (d•) 	
(FITZHUGH, 1969) and the time constant tmye by 

(10) 
where Pmye and Pa are the resistivities of myelin and axo-
plasm, respectively, K is the dielectric constant of myelin, e0 
is the permittivity of a vacuum, d. is the outer diameter of 
the myelin sheath and d; is the diameter of the axonal 
membrane. The rest potential V,. is - 80 mV; Cmu and 
RITCHIE (1984) contend that potassium ion channels 
beneath the myelin sheath maintain a uniform resting 
potential throughout the internodal region. We also 
assume that the resistance of the extracellular space is neg-
ligible, which may not be valid for axons that are tightly 
packed in a nerve bundle where a more detailed model 
may be needed (ALTMAN and PLONSEY, 1988). 

The distributed cable equation (eqn. 8) is solved explic-
itly for the entire axon. At a node, eqns. 4-7 are included 
as an additional source of transmembrane current; no aux-
iliary equations are needed as in FITZHUGH (1962) to guar-
antee that current is continuous at the node. 

During electromagnetic stimulation, the axon first fires 
where the negative gradient of the component of the elec-
tric field in the axial direction reaches a maximum. 
We previously derived a source term of the form 
-A.2 oex(x, t)jox in the cable equation of an unmyelinated 
axon which specifies how the induced electric field gives 
rise to a transmembrane current (RoTH and BASSER, 1990). 

Once the electromagnetic source term is prescribed, 
formal analogies can be drawn between electromagnetic 
stimulation and stimulation by a microelectrode or extra-
cellular electrodes by comparing their respective dynamic 
equations. For stimulation with extracellular electrodes, 
oexfox is replaced by - o2 Ve/ox2 in eqn. 8, where V., is the 
extracellular potential developed by the electrodes 
(RATTAY, 1986; 1988). For stimulation with an intracellular 
microelectrode, oexfox is replaced by - r; ip in eqn. 8, 
where iP is the inward applied current per unit length and 
r; is the resistance per unit length of the axoplasm 
(PLONSEY, 1969). 

*
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Fig. 3 	 (a) Cross-section of a myelinated nerve axon. The axonal 
membrane contains active regions, nodes of Ranvier, that 
are joined by passive segments insulated by myelin. Nodes 
are spaced a distance A apart and are owide. The axon 
has an outer diameter of d. and an inner diameter of d;. 
(b) Distributed-circuit model of a myelinated axon. At the 
node the membrane current per unit length im(x) flows 
through either the nodal membrane capacitance c. or the 
sodium or leak channels. Ohm's law relates the axial intra
cellular current I;( x) to the intracellular electric field; the 
equation of continuity relates l;(x) to the membrane 
current per unit length im(x); The intracellular resistance 
per unit length is r; ; the extracellular resistance is zero. 
The capacitance per unit length of the myelin is em; the 
resistance length of the myelin is rm. EL and EN. are the 
leakage and sodium Nernst potentials, respectively; gLand 
gNa are the leakage and sodium conductances, respectively. 
The batteries V,. represent the action of active pumps and 
channels beneath the myelin that maintain the resting 
potential of the membrane at -80 m V 



L 

RUSHTON (1951) postulated three scaling relationships 
for myelinated axons of different diameters, which have 
been verified experimentally (GoLDMAN and ALBUS, 1968). 
First, the distance between nodes varies linearly with axon 
diameter. Experimental data suggest that the node spacing 
is about 100 times the myelin outer diameter, although this 
relationship does not hold for an axon whose diameter is 
less than 4,um (RITCmE, 1982) 

- = 100 	 (11)
do 

Secondly, the ratio of the inner and outer diameters of the 
myelin sheath is constant, 

d. 
___!. = 0·6 	 (12)
do 

Thirdly, the width of the node b is independent of axon 
size (FITZHUGH, 1969). We choose b = 1·5,urn (SWEENEY et 
al., 1987). 

The system of nonlinear partial differential equations, 
eqns. 4-12, is solved numerically on a Cray XMP-24 
(ASCL, National Cancer Institute, Frederick, Maryland) 
using the method of lines-a finite element algorithm 
(IMSL Scientific Subroutine Library). The membrane is 
initially at rest, i.e. V(x, 0) = V,.; both ends of the axon are 
assumed to be sealed. 

3 Results 
Fig. 4 shows a contour plot of the transmembrane 

potential as a function of the distance x along the axon 
and the time t after the onset of the stimulus for a axon 
with an outer diameter of 20 ,urn. The plane x = 0 is per-
pendicular to the axon and passes through the centre of 
the coil. The axon is assumed to lie 0·15 em below the top 
surface of the limb. After a latency of approximately 0·15 
ms, two action potentials develop, propagating in opposite 
directions with speeds of about 66 m s- 1 • The origin of 
stimulation, x = -2·5cm, corresponds to the position 
where -oex(x,t)/ox reaches a maximum. Membrane 
hyperpolarisation is greatest at x = +2·5 em where 
-oe:x:(x, t)/ox is a minimum. Although x = 0 is the position 
where e"'(x, t) reaches a maximum, -oe:x:(x, t)iox vanishes 
there. The V = 0 contour shows that the travelling wave 
front rises faster than it falls. 
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Fig. 4 	 Contour plot of the transmembrane potential along a 20 Jl.m 
axon located 0·15 em below the surface of the limb, in 
response to a suprathreshold stimulus (V0 = 160(1 V). The 
origin of stimulation is at x = - 2·5 em while the latency is 
approximately 0·15 ms 

We define threshold stimulus strength in the following 
way: we determine when and where along the axon the 
stimulus strength -oex(x, t)jox reaches a maximum value 
(in the previous example at x = - 2·5 em at t = 0). The 
threshold stimulus strength is the minimum value of this 
quantity that is sufficient to elicit an action potential. 
Threshold stimulus strength is determined to within ±0·5 
per cent using a binary search algorithm. Stimulation 
usually occurs when the membrane is depolarised from 
rest by about 20mV or to V = -60mV. 

For a set of current pulses with the same duration, 
threshold stimulus strength is proportional to the initial 
voltage on the capacitor in the stimulating circuit V0 • Fig. 
5 shows the predicted relationship between V0 and the 
outer diameter of the axon do . The axon lies 0·15 em below 
the surface of the limb. A regression line was fitted to the 
data; it was found to have a slope of -2·01 and a coeffi-
cient of correlation of 0·9997. The model predicts that 
threshold stimulus strength is inversely proportional to the 
square of the axon diameter. 

105 

\ 

103L---------------~~--------------_J10-4 10-3 	 10-2 
axon diameter, em 

Fig. 5 	 Threshold capacitor voltage required to stimulate axons of 
different diameters. The stimuli have different amplitudes 
but the same durations. A regression line was fitted to the 
data; it has a slope of -2·01 and a coefficient of corre
lation of 0·9997, indicating that threshold voltage is 
inversely proportional to the square of the axon diameter 
(R = 0·47il, L = 20J1.H, C = 3100J1.F, axon depth 
=0·15cm) 

The temporal envelope of -oe"'(x,t)/ox also influences 
whether or not the axon is stimulated. The relationship 
between threshold stimulus strength and pulse duration 'c 
is shown in Fig. 6 for three different axon diameters. 
Experimentally, 'c can be varied independently of the 
stimulus strength by altering R or C. In generating Fig. 6, 
L was kept constant while R and C were chosen to keep 
the damping factor of the circuit (R/2) JC7L unchanged, 
thereby making the set of applied current pulses self-
similar. Threshold stimulus strength asymptotically 
approaches a constant value for long duration pulses and 
is inversely proportional to duration for short pulses. 

It is of great clinical value and scientific interest to deter-
mine the regions of excitation within a tissue mass follow-
ing electromagnetic stimulation. We call this region the 
'volume of stimulation' (RATTAY, 1987). It is bounded by 
surfaces along which oe"'(x, y, z, 0)/ox = -682mV em - 2 

(Fig. 7a). Within the volume of stimulation axons whose 
outer diameters are 20 ,urn or larger will be excited. The 
volume of stimulation has two lobes, one below the circu-
lar coil but displaced from its centre and the other oriented 
almost perpendicular to the plane of the coil. Fig. 7b shows 
transverse sections of the limb in which the volume of 
stimulation is shown in black. Note that no stimulation 
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Fig. 6 	 Threshold stimulus strength against stimulus duration. 
This simulation is performed by varying the resistance and 
capacitance in the stimulating circuit while keeping the 
damping factor constant. The threshold stimulus strength 
approaches an asymptote for long duration pulses and is 
inversely proportional to 't"c for short duration pulses. 
Smaller diameter axons require larger threshold stimuli 
0 5 J.lm D 12·5 t~m <> 20 J.lm 

occurs along the transverse plane x = 0 because the axial 
electric field gradient vanishes there by symmetry. If block-
ing, rather than initiating, nerve conduction was of inter-
est, the regions of tissue hyperpolarisation could be 
calculated and displayed in an analogous fashion. 

In Figs. 7a and b, the current flows clockwise in the coil 
(viewed from above). If the current polarity were reversed, 
the lobes of the volume of stimulation would be reflected 
across the plane x = 0. With a reversal of polarity we also 
expect a difference in the arrival time of action potentials
(or EMGs) at a distance electrode (RoTH and BASSER, 
1990). For a 20pm axon 0·15cm below the limb surface, 
we predict a time difference of approximately 0·8 ms, which 
is calculated by dividing the distance between the extrema 
in oex/ox by the conduction velocity of the action poten-
tial. 

a 

b 

Fig. 7 	 (a) Three-dimensional rendering of the volume of stimu
lation in a cylindrical limb, produced by a circular coil. 
The regions in which threshold stimulus strength is greater 
than 682 mV em- 2 are displayed as cavities in this 
computer-generated figure. An axon that is oriented 
axially, with a diameter greater than or equal to 20 J.lm, 
and passing through one of these cavities is expected to be 
stimulated. (b) Series of transverse cross-sections of the 
limb showing the volume of stimulation (black). Successive 
slices are separated by 1·5 em and the coil radius is 4·5 em 



4 Discussion 
To explain relationships between threshold stimulus 

strength, axon diameter and pulse duration, we simplify 
our model of the axon to include only essential elements. 
First, we consider the passive, subthreshold response of the 
axon by ignoring the sodium current. This approximation 
is justified since we consider where and when an action 
potential fires, not the subsequent dynamic behaviour of 
the axon once it is stimulated. Secondly, the distance over 
which the potential varies is in the order of the coil dia-
meter, which is large compared to the separation between 
nodes of Ranvier. Therefore, the equations describing an 
axon with discrete, nodal current sources can be simplified 
to an equation of a uniform axon. This equivalent repre-
sentation of the cable equation, suggested by ANDRIETTI 
and BERNARDINI (1984), can be achieved using the method 
of multiple scales (e.g., KELLER 1977; 1980). This method 
reduces to averaging the membrane impedances over the 
nodal and internodal regions. With these assumptions and 
RUSHTON's (1951) scaling laws for axons of different dia-
meters (eqns. 11 and 12), we derive a simplified subthresh-
old cable equation for electromagnetic stimulation 

, 2 o
2 
V _ av -(V- )= , 2 oex(x,t) 

ox2 	 (13)II. T ot V,. II. OX 

where the length and time constants A. and -r for the equiv-
alent axon are 

(14) 

and 

c + 652 KBO 
n J 

-r=----- (15)1 
9L + 652 --~ 

Pmye 0 

Using the parameters in Table 1, -r = 0·0388 ms and A. = 
117 do or 1·17 A. For a 20 pm axon, the length constant is 
0·234cm. 

The cable equation, eqn. 13, describes many salient fea-
tures of electromagnetic stimulation of axons. By rescaling 
the variables in this equation, we estimate the. relative 
importance of each of its terms and derive quantitative
relationships between its parameters. The axial co-
ordinate x is normalised by the radius of the stimulating
coil rc, which is the relevant length scale of the stimulation 
that is imposed upon the axon 

(16) 
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As x and rc both have units of em, the new variable x is 
dimensionless. Similarly, time t is normalised by the stimu-
lus duration •c 

(17) 

The axial electric field gradient (oex(x, t)fox) is scaled by its 
extreme value (oexfoxmax) with respect to both space and 
time 

oex(x, t) 
oex(x, t) ox 

ox oex 

OXmax 

(18) 

and the deviation of the transmembrane potential from its 
resting value is normalised by the change in potential 
required to elicit an action potential-its threshold poten-
tial VT, 

V-V.:
V=---' 	 (19)

VT 

We substitute these normalised variables into the cable 
equation to obtain 

(~)
2 02 ~ _ (~) oV _ V = (A.2 

(oex) ) oex(x, t) 
rc OX Lc ot VT OX max OX 

(20) 

The behaviour of this normalised cable equation is deter-
mined by the three dimensionless parameters enclosed in 
parentheses. In most applications of electromagnetic 
stimulation, the square of the ratio of the length constant 
and the coil radius is in the order of 10- 3, so that the first 
term on the left hand side of eqn. 20 is negligible. There-
fore, the transmembrane potential is determined by the 
two remaining dimensionless parameters in eqn. 20. We 
define T as the ratio of the membrane time constant and 
stimulus duration; we call the dimensionless parameter on 
the right hand side of eqn. 20 the electromagnetic stimu-
lation number sem 

(21) 

For a stimulus whose duration is long with respect to the 
axon time constant (i.e., a rheobase stimulus r ~ rc) Sem is 
the ratio of the magnitude of the induced transmembrane 
potential A. 2(oeJoxmax) and the axon's intrinsic threshold 
potential VT. sem is less than one for subthreshold stimuli 
and greater than one for suprathreshold stimuli. We can 
use this threshold condition, sem = 1, to make an a priori 
estimate of the magnitude of the minimum applied electric 
field gradient sufficient to stimulate a 20 pm myelinated 
axon (A.= 0·234cm, VT = 20mV, sem = 1) 

oex(x, t)) ~ v~ = 365 m ~ (22)( ox max A. em 

This estimated value is within a factor of two of the thresh-
old stimulus strength calculated numerically for a 20 pm 
axon, 682mV cm- 2• 

Using eqn. 20, we can also explain why the threshold 
stimulus strength is inversely proportional to the outer 
diameter of the axon, as shown in Fig. 5. The substitution 
of the definition of the length constant, eqn. 14, into the 

expression for Sem and the regrouping of terms gives

(s = 	 15 p 1do 2 ( oex) ) (23) 
em { PagL{J + 652 _a_ VT OX max 

Pmye 

If we assume that the physical properties of myelin and 
axoplasm, and the node width, are all independent of axon 
diameter (FITZHUGH, 1969), the term within brackets on 
the right hand side of eqn. 23 must be constant, i.e. inde-
pendent of axon size (using our parameters it equals 
14400). Rushton's 'principle of corresponding states' (i.e. 
corresponding parts of myelinated axons of different dia-
meter are equipotential) implies that the threshold poten-
tial VT also does not vary with axon size (RusHTON, 1951). 
Therefore, for a constant stimulus duration, we conclude 
that 

(24) 

We again use the nondimensional cable equation to 
explain the strength/duration data shown in Fig. 6. We 
neglect the term in eqn. 20 containing the small parameter 
A.frc and evaluate the cable equation at the position where 
oexfox is maximum. Recalling that oeJox is proportional 
to dl(t)fdt, we obtain 

ov-T--V= S e-r,rott
ot em 

x (cosh (rc w 2 t)- :: sinh (rc w2 t)) (25) 

Given that the transmembrane potential is initially at rest 
(V(O) = 0), we can solve this equation analytically, finding 

V(t) = -Sem {[ !X _ P 
p - rx 1 - Trx 1 - TP 

x e-t/T- rx e-at+ p e-Pt} (26)
1- Trx 1- TP 

J 

E 

<fl"' 


10-1'-:-----"----::c-------'-:---___j_-:--____j 

10-1 10o 101 102 103 
'~c 

Fig. 8 	 Plot of the dimensionless electromagnetic stimulation 
number s.m at threshold against the normalised pulse 
period r:Jr computed numerically. Superimposed is the sol
ution to the homogenised, passive cable model eqn. 26. 
This curve summarises the results of many numerical 
experiments in which nerve diameter and pulse duration 
are varied and establishes the utility of the homogenised 
model for describing near threshold events in electromag
netic stimulation 
0 5 jlm D 12·5 Jlm ()20 Jlm 
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where two new dimensionless parameters, ex and p, are 
related to the time course of the current pulse ex = 
t"c{w1 - w 2) and P= t"c{w 1 + w 2 ). Varying ex and P to keep 
the damping factor constant, we determine the value of sem 
required for V(t) to reach a maximum value of 1 using eqn. 
26 and evaluate the dimensionless duration, rJr = 1/T, 
using eqn. 3. These equations predict the strength/duration 
curve shown as a solid curve in Fig. 8. Juxtaposed are the 
numerical data obtained using the full nonlinear model. 
The curve does not have the classical 1/(1 - e-I IT) form 
which is appropriate for electrical stimulation with rec-
tangular current pulses (GEDDES, 1988)---the transition 
from long to short durations is wider. Good agreement is 
seen between the theoretical and numerical results. Thus, 
the simplified model concisely summarises the results of 
many numerical experiments. 

This model of electromagnetic stimulation depends on 
several assumptions which must still be examined with 
great care. For instance, we assume the limb is a homoge-
neous cylindrical volume conductor containing a homoge-
neous axon oriented parallel to the axis of the limb. We 
also assume that the induced transmembrane potential 
depends only on the axial position along the axon and 
does not vary over the axon cross-section. The validity of 
these assumptions can only be ascertained by a more 
detailed three-dimensional analysis. For now, we must be 
cautious in using this model to interpret in vivo experimen-
tal results. 

This model could be used to address any interaction of 
low-frequency electromagnetic fields with electrically active 
tissue. For instance, in magnetic resonance imaging the 
rapidly varing gradient magnetic fields can induce electric 
fields in the body that give rise to sensory stimulation 
(COHEN et al., 1990b). Another application is in health 
physics. The model can be used to calculate the induced 
electric fields caused by high-voltage power lines. 

Finally, as an aside, if the axon were to follow a sinuous 
path within the tissue or be oriented skew to the plane of 
the coil, it is still possible to calculate the induced electric 
field in the direction of the axon. The trajectory of the 
axon can be represented as a space curve that is param-
eterised by its arc-length s i.e. r = r(s), where r is the dis-
placement vector which points to an element of the axon 
dr(s). For simplicity, the origin of this co-ordinate system 
is the same one used to describe the electric field. In eqn. 
20, -(oexfox) is replaced by 

dr(s) )a ds 
(27)-	 os E(r(s), t) • Id~) I ~ 	

5 	Conclusion 
This model of magnetic stimulation makes several test-

able predictions about the action of an induced electro-
magnetic field on an axon. By using Maxwell's equations 
and a cable equation we have explained why an axon is 
stimulated by electromagnetic induction-the induced 
axial electric field gradient causes a depolarising current to 
flow across the axonal membrane. The origin of stimu-
lation occurs where the negative induced electric field gra-
dient is a maximum along the axon. Relationships between 
threshold stimulus strength, axon diameter and pulse 
duration, and the locus of the volume of stimulation, can 
be used to predict whether an axon will be stimulated 
electromagnetically. 
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