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Abstract-A model is presented to explain the physics of nerve stim­
ulation by electromagnetic induction. Maxwell's equations predict the 
induced electric field distribution that is produced when a capacitor is 
discharged through a stimulating coil. A nonlinear Hodgkin-Huxley 
cable model describes the response of the nerve fiber to this induced 
electric field. Once the coil's position, orientation, and shape are given 
and the resistance, capacitance, and initial voltage of the stimulating 
circuit are specified, this model predicts the resulting transmembrane 
potential of the fiber as a function of distance and time: It is shown 
that the nerve fiber is stimulated by the gradient of the component of 
the induced electric field that is parallel to the fiber, which hyperpo­
larizes or depolarizes the membrane and may stimulate an action po­
tential. Finally, it predicts complicated dynamics such as action poten­
tial annihilation and dispersion. 
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INTRODUCTION 

I
N the last decade a novel method of nerve stimulation 
has been developed which exploits the principle of elec­

tromagnetic induction [ 1], [2]. This technique has been 
used to map the motor cortex [3 ]-[5] and measure central 
motor conduction delay in patients with multiple sclerosis 
[6]-[8] and degenerative ataxic disorders [9]. It has also 
been used to measure conduction velocity in peripheral 
nerves [ 10]. Stimulation by electromagnetic induction is 
noninvasive and less painful than applying a voltage dif­
ference to surface electrodes. In practice, stimulation is 

effected by passing a time-varying current through a wire 
coil that is in close proximity to excitable tissue (Fig. 1). 
Although many investigators have demonstrated this phe­
nomenon experimentally in both peripheral nerves and the 
cerebral cortex, a physical description of the interaction 
between the induced electric field and these excitable tis­
sues has not yet been elucidated. 
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Fig. I. A schematic diagram showing the experimental apparatus for stim­

ulating a nerve using electromagnetic induction. A current/( t) is passed 
through a coil placed near a nerve fiber; the induced electric field stim­
ulates the nerve. The nerve lies parallel to the x axis at y = r .. and z = 
\.0 em. The coil radius is also r,; the fiber radius is a. 

In this paper we present a model combining elementary 
circui t analysis, Maxwell's equations of electromagnetic 
theory, and nonlinear cable theory to explain the action 
of the induced electric field upon a nerve fiber. The cur­
rent source and stimulating coil are modeled as a series 
RLC circuit. The induced electric field distribution within 
the tissue is calculated from the geometry of the stimu­
lating coil and the time course of the current. The effect 
of the induced electric field upon the nerve is determined 
with a cable model which contains active Hodgkin-Hux-

· 
ley elements. Inputs to the model are physical properties 
of the nerve fiber such as its membrane capacitance and 
conductance, and independent variables such as the coil 
geometry, its position and orientation with respect to the 
nerve fiber, and the capacitance and initial voltage of the 
stimulating circuit. The model then predicts the resulting 
transmembrane potential in the fiber as a function of dis­
tance and time. There are no free parameters in this de­
scription of the interaction of the electromagnetic field and 
the nerve fiber. 

It is shown that the magnitude and time-course of the 
gradient of the component of the induced electric field 
parallel to the nerve fiber determines whether stimulation 

occurs, and where it occurs. This quantity plays a similar 
role in electromagnetic stimulation as the applied trans­
membrane current density plays in nerve stimulation by a 
microelectrode. It can hyperpolarize or depolarize the 
membrane and can stimulate the fiber to propagate an ac­

tion potential. 

THEORY 
Passive Cable Model 

In this section we develop a mathematical model of the 
action of electromagnetic induction on a passive nerve fi­
ber, appropriate for describing its subthreshold behavior. 
We employ the cable equation to model the passive prop­
erties of a nerve fiber [Fig. 2(a)] [11], [12]. The under­
lying assumptions of this model are: 1) the intracellular 
potential is only a function of the axial distance x (i.e., 
the distance along the length of the fiber) [13]; 2) the 



axoplasm behaves like a linear, Ohmic conductor whose 
resistance per unit length is r1; and 3) the extracellular 
potential produced by the fiber's own activity is negligi­
ble. The last assumption is also used by Rattay in his 
model of electrical stimulation using extracellular elec­
trodes [14], and is valid because the extracellular poten­
tial produced by an action potential propagating along a 
single nerve axon lying in a large extracellular volume 
conductor is less than 1 mV [ 15]. This assumption would 
not be valid for a nerve surrounded by a thin layer of con­
ducting fluid suspended in air or oil. Because we can ne­
glect the extracellular potential, the intracellular potential 
can be set equal to the transmembrane potential V. 

Referring to Fig. 2(a), we see that the axial current in­
side the fiber 11 is given by Ohm's law 

av
r1 ' I  = -­ (1 ) 

OX 

and the membrane current per unit length im is given by 
the law of conservation of current 

ai1 
(2)

ax 

The passive membrane is represented by a capacitance per 
unit length of c m and a resistance times unit length of r m. 

The membrane current per unit length is therefore given 
by 

(3) 

These three equations can be combined to yield the fa­
miliar cable equation 

(4) 
a2v av 

r ­")1_2-- V=
ox2 ot 

where the length constant A is 

(5) 

and the time constant r is 

(6) 

-
!1 (x) 

f--t,.x---J 
(a) 

(b) 

Fig. 2. (a) An electrical circuit representing the passive cable. The intra­
cellular space is modelled by a resistance per unit length r;. the mem­
brane by a resistance times unit length r, and capacitance per unit length
by c,. The extracellular potential is assumed to be zero. The axial intra­
cellular current /, (x) is related to the intracellular potential V(x) by
Ohm's law, and related to the membrane current per unit length. i, (x)
by the equation of continuity. (b) An active cable with Hodgkin-Huxley
membrane. The membrane is now represented by three voltage and time
dependent conductances, representing the sodium, potassium, and leak­
age channels [22]. 

So far we have only considered the contribution to the 
intracellular electric field that arose from the charge dis­
tribution on the membrane's surface. In that case, we were 
justified in equating the axial component of the electric 
field inside the fiber E1 with the negative gradient of the 
intracellular potential 

av
E; = (7)

ax 

However, in electromagnetic stimulation a time-varying 
magnetic field gives rise to an additional source of electric 
field through electromagnetic induction. Therefore, (7) 
must be amended to include the component of the induced 
electric field parallel to the fiber Ex(x, t): 

av 
=E; - + �:x(x, t). (8)

ax 

The induced electric field equals the negative rate of 
change of the magnetic vector potential A 

aA 
t = - . (9)-

at 

It is important to realize that the induced electric field can­
not be expressed as the gradient of the voltage, but instead 
must be related to a vector potential [ 16] . Both the vector 
potential and induced electric field are determined by the 
coil current and geometry [17], as we describe in detail 
below. We also note that it is the component of the elec­
tric field parallel to the fiber (in the axial direction) that 
enters our model and ultimately results in stimulation of 
the nerve. This is consistent with the conclusion of Rush­
ton [ 18] that electric fields oriented parallel to nerve fibers 
cause stimulation more readily than electric fields ori­
ented transverse to fibers. 

Taking (8) into consideration, (1) must be rewritten as 

av 
r;f; = - + Ex{X, t). ( 10)

OX 
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Equation (2), which follows from the continuity of cur­
rent, remains valid. In principle, (3) should be modified 
to take into account the radial component oft in the mem­
brane. However, the strength of the electric field in the 
membrane due to charge on its surface is on the order of 
107 V/m whereas the electric field strength induced in the 
tissue by the coil is generally less than 103 V/m. There­
fore, we can safely neglect the contribution of t to the 
membrane current. When we combine (2) and (3) with 
(10), we obtain a modified cable equation 

}-._2 a2V _ = 7 aV }-._2 aEx 
V + ( l l) 

ax2 at ax 

where A. and 7 are the same space and time constants de­
fined above. The new term in the cable equation acts like 
a sink of transmembrane potential, with a strength pro­
portional to the axial derivative of the induced electric 
field and the square of the length constant. This result is 
analogous to the conclusion of Rattay [ 14], [ 19], [20], 
who considered stimulation of nerve fibers by distant 
electrodes. 

The reason that the derivative of the electric field ap­
pears in (11) instead of the electric field itself is because 
the membrane current, not the axial current along the fi­
ber, depolarizes the membrane. By (2) we see that the 
membrane current is a maximum where the spatial gra­
dients of the axial current and the induced electric field 
are the largest. Interestingly, at the location along the fi­
ber where the electric field is maximum the axial deriva­
tive of the electric field must necessarily be zero, so we 
expect little or no stimulation to occur where the electric 
field is largest. This conclusion is in contrast to the as­
sertion by Barker et al. that stimulation occurs where the 
electric field is maximum [6], but is consistent with the 
recent observation by Reilly that a spatial gradient of the 
electric field is required for stimulation [21].

Hodgkin-Huxley Model 

While the passive cable model provides insight into the 
way the induced electric field interacts with the nerve, it 
does not completely describe the dynamics of nerve stim­
ulation. In order to study the stimulation and propagation 
of action potentials, we must consider an active mem­
brane model. We use the Hodgkin-Huxley model [22] to 
represent the nerve membrane. 

To implement the Hodgkin-Huxley model, we modify 
the passive cable model [Fig. 2(b)]. The resistance per 
unit length of the fiber ri can be expressed in terms of the 
fiber radius a and the resistivity of the axoplasm Ri as ri 
= R) 1r a2• The membrane current per unit length i m is 
related to the membrane current density Jm by the expres­
sion im = 27ralm; similarly the membrane capacitance per 
unit length em is related to the capacitance per unit area 
em by Cm = 27ra em. Finally' we replace the membrane 
resistance times unit length rm by an active model of the 
time and voltage dependent sodium, potassium, and leak­
age channels [22] [Fig. 2(b)]. With these modifications, 

the cable equation becomes 
a a2V ( 3 4(

--2 - gNam h( V- ENa) + gKn V- EK )2Riax 

av a at, 
= (x, t) (12 )+ gL( V- EL)) em + R ax at 2 I 

where gNa• gK and gLare the peak sodium, potassium, and 
leakage membrane conductances per unit area, and ENa• 

EK, and EL are the sodium, potassium, and leakage Nemst 
potentials. The gating variables m, h, and n are dimen­
sionless functions of time and voltage which vary between 
zero and one. Each gating variable follows a first-order 
differential equation 

amat= a111(1 - m)- {)111m (13) 

( 14) 

an ( -= a!/ 1 n 1 ( 15) - ) {3 /n 
at 

where the a's and f)'s are voltage dependent rate constants 
determined from voltage clamp measurements 

10 ( ) 
( ) 

10 

( 
0 

40 V] -am = 

exp 1.0 

(- -
16) 

-6
8

-{3111 = 4.0 exp 
V

(17) 

-6 -
a" = 0.07 exp v ( 18) 

( -35 - v) 1.0
{311 = 

exp + l.O 
(

19 ) 

0.01 [-55 - V] (20) 

v-65 -f3u = 0.125 exp 8 (21) 

(We have assumed that the resting potential is -65 m V;
V is measured in m V, a and {3 in ms- 1

• )
Equations (12) through (21) constitute a system of four, 

nonlinear, coupled partial differential equations. They are 
solved numerically for the transmembrane potential V(x,
t) and the three gating parameters m(x, t), n (x, t), and
h(x, t), using the method of lines. In this technique, the 
fiber is subdivided into a discrete number of intervals in 
which the trial solution is approximated by a summation 
of functions of x multiplied by functions oft. By requiring 
that these solutions are continuous at each node, it is pos­
sible to transform this system of partial differential equa­



tial distribution has an unexpected influence on the loca­
tion of stimulation. Fig. 3(c) shows a contour plot of 
oe1j ox as a function of x andy. The bold circle represents 
the position of the coil, with the arrowhead pointing in 
the direction of the rate of change of the current (the di­
rection of the current when the current is increasing in 
time), and the dotted line indicates the location of the 
nerve fiber. The minus signs indicate the regions where 
we expect a nerve that is parallel to the x axis to be max­
imally depolarized, i.e., the location of stimulation. The 
plus signs indicate areas of hyperpolarization. 
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Fig. 3. (a) The x component of the induced electric field Ex as function of 
x andy, calculated in a plane 1.0 em below a circular coil whose radius 

is 2.5 em. (b) The axial (x) derivative of the x component of the 
electric field, aexfax, as function of X andy. (c) A contour plot of aexfax 
as a function of x and y, with each curve representing increments of 5 
mVfcm2• The bold circle represents the position of the coil and the 
dashed line the position of the nerve. The minus sign indicates the lo­
cation where a nerve lying parallel to the x axis will be maximally de­
polarized; the plus sign indicates the position of maximum hyperpolar­
ization. 

The Current in the Coil 

The coil current I( t) is predicted by a series RLC model 
of the current stimulator [27] (Fig. 4). The current pulse 
is generated when a capacitor C, initially charged to a 
voltage VO> is discharged through a coil whose inductance 
is L and resistance is R. In practice the circuit that gen­
erates the current pulse may be more complex than the 
one we use. For example, it may contain several capaci­
tors wired in parallel [28], [29], a transformer to increase 
the current in the coil [30], or nonlinear elements such as 
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diodes to reduce oscillations [1], [6], [31], [32]. We chose 
the series RLC circuit because it is the simplest model of 
a stimulator that produces realistic current waveforms. 
However, more complicated circuits whose current wave­
forms could be calculated analytically or numerically
could easily be incorporated into this model. 

v 
o 

j_ R 

c 

L 

Fig. 4. An RLC circuit used to represent the stimulating circuit. The ca­
pacitor C is charged to an initial voltage V.,. At time t = 0 the switch S 
is closed and the capacitor is discharged through the coil inductance L 
and resistance R. 

The inductance L of a circular coil of radius r, wound 
with N turns of wire having radius rw is [33] 

L = JLorcN2 (ln (�:) - 1.75) . (25) 

A coil of radius 2.5 em with 30 turns wound from 1.0 mm 
radius wire has an inductance of 0.165 mH. Using this 
value of L, and given values of C, R, and V0, we can 
calculate the coil current I ( t) from elementary circuit the­
ory. The current either rises to a maximum and then falls 
to zero (overdamped), or else it oscillates with decreasing 
amplitude (underdamped), depending whether R2 I ( 4L2) 
- l I ( LC) is greater than or less than zero, respectively 
[34]. The critically damped case (R2 I(4L2) - 1I(LC) 
= 0) is difficult to achieve experimentally and will not be 

considered here. If the circuit is overdamped, the current 
is given by the following expression: 

I(t) V0Cw2e-w1t 1 sinh (w2t) (26) ((:�Y- ) 
where 

2L 
R (27) 

and 

LC 
(28) 

If the current is underdamped, then 

I(t) = V0Cw2e-w1t (29)+ 1 sin (w2 t), ((:�Y ) 

where w1 is the same as given above and 

L
(30) 

Assuming that C = 200 JLF and R 3.0 0, we find that 
the circuit is overdamped with = 

= 

w1 9.07 ms-1 and w2 
7.21 ms The 

= 

_, resulting current waveform is shown in 
Fig. 5(a), with 

_ 

V0 = 200 V. Its time derivative, given in 
Fig. 5(b), is bipolar. Using a current pulse that rises and 
falls we cannot produce a monopolar stimulation pulse, 
as is often used in electrical stimulation ( dlIdt would ex­
hibit multiple zero-crossings if the coil current were os­
cillating). We can, however, adjust the resistance and ca­
pacitance so that current rises faster than it falls. We chose 
C and R so that our current waveform approximates that 
given by Hess et al. [7].

To obtain the electric field gradient oEx(x, t)lox we 
simply modulate the function of space in Fig. 3(b) ( along 
the line y = rc) by the function of time in Fig. 5(b). This 
product is the source of transmembrane potential which 
acts to stimulate the nerve. Fig. 6 shows a three-dimen­
sional plot. of the induced electric field gradient as a func­
tion of time and distance along the fiber. 

3 
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dl(t)
dt 0.8 

0.4 

0.0 
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Fig. 5. The time course of (a) the current stimulus /(I) and (b) its time 
derivative. This waveform was generated using (26), with R = 3 0, L 
= 0.165 mH, and C = 200 ,.F, selected to approximate the current pulse 
given by Hess et at. [7].
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dEx(x,yl 

dx 

( mV )


em' 


0 

0 
x (em) 

Fig. 6. The source term {JEjax as a function of x and I, evaluated along 
the length of the nerve fiber. This function represents the gradient of the 
electric field along the line y = r, shown in Fig. 3(b), modulated in time 
by the current waveform shown in Fig. 5(b). 

RESULTS 

The model is used to determine the response of the 
nerve fiber to current pulses of different amplitudes. If the 
stimulus strength is below threshold, e.g.' v(} = 30 v' the 
fiber behaves like a passive cable and the induced voltage 
is dissipated. Fig. 7 shows a three-dimensional plot of the 
subthreshold transmembrane potential as a function of 
distance along the fiber and elapsed time since the pulse 
is applied. Direct comparison of Figs. 6 and 7 show that 
the resulting transmembrane potential has a time course 
that resembles the time course of the electric field, al­
though the response of the nerve is somewhat delayed due 
to the time required for the accumulation of charge on the 
membrane. 

-55 

V(x,t) 

(mV) 

-65 

0 
x (em) 

Fig. 7. A three-dimensional plot of the subthreshold response of the nerve 
fiber to electromagnetic stimulation ( V, = 30 V ). The vertical axis is 
the transmembrane potential in the fiber, and the horizontal axes repre­
sent the distance along the fiber x and the time after the capacitor was 
discharged 1. 

If the stimulus strength is slightly larger ( Vo = 32.5 
V), an action potential is evoked. The three-dimensional 
plot [Fig. 8(a)] shows the depolarized portion of the nerve 
has been stimulated, while the hyperpolarized portion is 
not. After a latency period of about 1.0 ms, the trans­
membrane potential is seen to rise rapidly, producing two 
action potentials which propagate in opposite directions 
along the nerve. The contour plot [Fig. 8(b)] clearly shows 
the speed of the wave, the latency period, and the site of 
stimulation. The action potential is initiated at x = -2.0 
em, which corresponds to the position of the maximum of 
-aEx/ax, as shown in Fig. 6. 
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Fig. 8. (a) A three-dimensional plot of the response of the nerve fiber to 
electromagnetic stimulation just above threshold ( V, = 32.5 V ). The 
vertical axis is the transmembrane potential, and the horizontal axes rep­
resent the distance along the fiber x and the time after the capacitor is 
discharged t. (b) The same function in a contour plot. 

For larger stimuli, e.g., Vo = 150 V, more complicated 
dynamics are observed. Fig. 9(a) shows two action poten­
tials, traveling in opposite directions, that are evoked after 
a much shorter latency period. Fig. 9(b) shows that a re­
gion of several centimeters along the fiber was simulta­
neously brought above threshold, so it is difficult to define 
the exact location of stimulation. The resulting wave trav­
eling in the positive x direction through the hyperpolar­
ized region propagates more slowly than the wave trav­
eling in the negative x direction through the depolarized 
region. 



 

  

x (em) 

(a) 

4 
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x (em) 
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Fig. 9. (a) A three dimensional plot of the response of the nerve fiber to 
electromagnetic stimulation well above threshold ( V, = 150 V). The 

vertical axis is the transmembrane potential in the fiber, and the hori
zontal axes represent the distance along the fiber x and the time after the 
capacitor is discharged I. (b) The same function in a contour plot. 

We can change the time course of the stimulus pulse by 
reducing the resistance of the stimulating circuit to 0. 3 n, 
making the current waveform underdamped so that the 
current oscillates several times before decaying to zero 
[Fig. lO(a)]. Such oscillations give rise to even more 
complicated dynamics, shown in the contour plot of the 
transmembrane potential in Fig. lO(b) ( V0 = 35 V). Two
action potentials are initiated at x = -2.0 em after a la­
tency of only 0.4 ms. Before the right-going front prop­
agates past the right edge of the coil, the derivative of the 
current in the coil has already changed sign there, depo­
larizing the nerve at x = +2.0 em, and initiating two 
more action potentials. The two action potentials that are 
propagating towards each other collide and annihilate one 
another. The remaining two action potentials propagate 
away from each other, having different apparent latency 
periods and origins of stimulation. It is not necessary to 

have an underdamped circuit in order to observe such be­
havior; we have seen these effects with overdamped cir­
cuits for fibers with different conduction velocities or coils 
with a larger diameter. With more elaborate coil designs, 
electromagnetic stimulation may give rise to phenomena 
such as conduction blockage at large stimulus strengths, 
similar to that observed by Rattay [ 19] in electrical stim­
ulation. 
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Fig. 10. 
 (a) The coil current as a function of time for R = 0.3 n ( V, = 

35 V ) . (b) A contour plot of the transmembrane potential as a function 
of distance along the fiber x and time after the capacitor is discharged t. 

DISCUSSION 

The relationship between the location of stimulation and 
the position and orientation of the coil relative to the nerve 
is not simple. For any given coil and a specified direction 
for the nerve fibers, we can use our model to determine a 
''volume of stimulation,'' for which only fibers passing 
through this volume are stimulated [ 19]. The edge of this 
volume might be called the "virtual cathode" associated 
with stimulation by electromagnetic induction [35]. For 
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some coil geometries, the shape of the virtual cathode 
might be very complex. 

If we stimulate an action potential once with our coil, 
then reverse the polarity of the coil current and stimulate 
again, our model predicts that propagated action poten­
tials measured at a common point far from the stimulating 
coil differ by a delay due to the change in the location of 
stimulation [from the x = -2.0 em to x = + 2.0 em in 
Fig. 3(c)]. This theoretical prediction is not consistent 
with measurements on the human median nerve [I 0], [36], 
[37], although in these experiments the coil orientations 
were somewhat different. More importantly, in this model 
we have not accounted for the charge accumulation on the 
surface of the arm, which could significantly affect the 
electric field distribution along the nerve [24]. It is im­
portant that additional experiments and theoretical studies 
be performed to resolve this issue. 

Our model can be used to calculate a strength-duration 
curve for electromagnetic stimulation for various pulse 
shapes [27], [34]. In addition, we expect fibers with dif­
ferent diameters or membrane properties to have different 
stimulus thresholds. This selectivity may differ for my­
elinated and unmyelinated nerves, and has been shown 
experimentally to differ for motor and sensory fibers [38]. 

Another application of this model is in designing stim­
ulator/coil systems. Both the spatial variation of the stim­
ulus and the time course of the current pulse depend on 
the coil geometry. It is desirable to deliver a focal stim­
ulus. The criterion for designing such a coil is to localize 
the axial derivative of the axial component of the electric 
field. The time course of the current pulse depends on the 
coil inductance. Changes in coil geometry that improve 
the spatial localization of the stimulus may also influence 
the temporal characteristics of the current waveform. We 
have not examined this tradeoff in this paper, but clearly 
future coil optimization schemes must consider both the 
temporal and spatial aspects of coil design. 

It is difficult to extend this model to describe the stim­
ulation of neurons in the cortex [36]. Because of the small 
size and complicated geometry of these neurons, we do 
not know if the conclusions reached in this paper for one­
dimensional nerve fibers apply. 

CoNCLUSION 

We have calculated the response of a nerve fiber to 
electric fields produced by electromagnetic induction. 
Three aspects of electromagnetic stimulation are coupled 
and must be considered together in one model: the current 
pulse shape, the spatial distribution of the induced electric 
field, and the interaction of the electric field with the 
nerve. Our primary conclusion is that the location and 
timing of the stimulus depend on the axial derivative of 
the axial component of the induced electric field. The 
model is useful for the design of optimized coils for stim­
ulating peripheral nerves. However, the extension of the 
model to account for neurons in the cortex is not obvious. 
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