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Neuroimaging studies, using various modalities, have evidenced a link between the general
intelligence factor (g) and regional brain function and structure in several multimodal
association areas. While in the last few years, developments in computational neuroanatomy
have made possible the in vivo quantification of cortical thickness, the relationship between
cortical thickness and psychometric intelligence has been little studied. Recently, cortical
thickness estimations have been improved by the use of an iterative hemisphere-specific
template registration algorithm which provides a better between-subject alignment of brain
surfaces. Using this improvement, we aimed to further characterize brain regions where
cortical thickness was associated with cognitive ability differences and to test the hypothesis
that these regions are mostly located in multimodal association areas. We report associations
between a general cognitive ability factor (as an estimate of g) derived from the four subtests of
the Wechsler Abbreviated Scale of Intelligence and cortical thickness adjusted for age, gender,
and scanner in a large sample of healthy children and adolescents (ages 6–18, n=216)
representative of the US population. Significant positive associations were evidenced between
the cognitive ability factor and cortical thickness in most multimodal association areas. Results
are consistent with a distributed model of intelligence.

© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Anumber of reports have shown that scores on various tests
of intelligence and cognitive ability are correlatedwith regional
brain structure and function (Colom et al., 2006; Deary et al.,
2006; Duncan et al., 2000; Gray et al., 2003; Jung&Haier, 2007;
Schmithorst & Holland, 2006). A recent review and meta-
analysis, suggested that a distributed network of multimodal
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association areas consistingof thedorsolateral prefrontal cortex
(DLPF), the inferior and superior parietal lobule, the anterior
cingulate cortex (ACC) and parts of the temporal and occipital
lobes, seems to be highly correlated structurally, functionally
and/or biochemically to general intellectual abilities (Jung &
Haier, 2007). This resulted in the proposal of a Parieto-Frontal
Integration Theory (P-FIT) (Jung & Haier, 2007). According to
the P-FIT, sensory information is first processed by temporal
and occipital areas for subsequent integration and abstraction
in parietal areas. Problem evaluation is then implemented by
the prefrontal cortex and response selection mediated via the
anterior cingulate.

Some of the structural imaging data that has served to
develop the P-FIT model stems from work conducted using
Voxel-Based Morphometry (VBM); a brain imaging analysis
method thatessentiallyproduces, foreachsubject, concentration
maps representing tissue proportion in local neighbourhoods.
sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010

mailto:sherifkarama@gmail.com
http://dx.doi.org/10.1016/j.intell.2009.03.010
http://www.sciencedirect.com/science/journal/01602896
http://dx.doi.org/10.1016/j.intell.2009.03.010
http://dx.doi.org/10.1016/j.intell.2008.09.006
http://dx.doi.org/10.1016/j.intell.2009.03.009
http://dx.doi.org/10.1016/j.intell.2009.03.009


2 S. Karama et al. / Intelligence xxx (2009) xxx–xxx

ARTICLE IN PRESS
More specifically, to each voxel (ie data point in a subject's brain)
becomes attached a value representing a distance-weighted
estimation of the proportion of a tissue of interest (eg gray
matter) that is present in its vicinity. These VBM-produced
concentration maps can be influenced by a multitude of factors
(Ashburner & Friston, 2001). For instance, in the cortex, VBM-
related associations with gray matter concentration for a given
region can be due, among other things, to differences in gray
matter volume, shape of cortical folding, and/ormisalignmentof
cortical gyri between subjects. Even if it were possible to
ascertain that VBM-related gray matter associations were due
exclusively to differences in cortical volume, this would still not
disambiguate cortical surface-related from cortical thickness-
related volume differences.

Developments in computational neuroanatomy have now
made possible MRI-based quantification of cortical thickness.
(Duncan et al., 2004; Fischl & Dale, 2000; Kim et al., 2005;
Kriegeskorte & Goebel, 2001; MacDonald et al., 2000; Mangin
et al., 2004; Thompson et al., 2004; Tohka et al., 2004). In
contrast to VBM, MRI-based cortical thickness quantification
follows cortical folding patterns and captures the distance
between white matter surface and pial gray matter surface,
producing scalar values measured in millimeters throughout
the cerebrum. It has been shown to be sensitive to differences
in cortical thickness as small as 0.29 mm between groups
with 100 subjects or more (Lerch & Evans, 2005). Not only can
cortical thickness quantification allow the examination of
associations between variables of interest and regional
cortical thickness, but it also can provide a measure of the
size of an effect in millimeters of cortical thickness per unit of
variable of interest. Importantly, cortical thickness has been
shown to be an index of normal brain development
(O'Donnell et al., 2005; Shaw et al., 2008; Sowell et al., 2004).

Using fully automated measures of cortical thickness by
Constrained Laplacian Anatomic Segmentation using Proximity
(CLASP), Shawetal. (2006) investigated, in collaborationwithour
lab at theMontreal Neurological Institute (MNI), the relationship
between IQand regional cortical thickness using selected subtests
from age-appropriate Wechsler intelligence scales (Wechsler,
1989, 1991, 1997). A main finding was that individuals having an
estimated IQ in the superior range (ie N121) had a generally
thicker cortex (primarily in frontal areas) during their late
childhood to early adulthood (ie between 8.6 to 29 years of age)
than subjects with a lower IQ. However, the patternwas reversed
for earlychildhood (iebetween3.8 and8.4 years of age) ashigh IQ
was associated with a thinner cortex in the same areas.

Recently, an iterative hemisphere-specific template regis-
tration algorithm that provides an improved between-subject
alignment of brain surfaces, when compared with the one
used for the Shaw et al. (2006) study, was developed and
implemented as a new step in cortical thickness estimation
using CLASP (Lyttelton et al., 2007).

As the association between regional cortical thickness and
psychometric intelligence has been little studied, we aimed to
examine this relationship in a new sample of children and
adolescents using the recently developed template registration
algorithm. Our aims were to further characterize and identify
brain areas where cortical thickness was associated with
cognitive performance and to determine whether such areas
were compatiblewith the recently proposed P-FIT (Jung&Haier,
2007). In order to do this, datawere obtained from the Pediatric
Please cite this article as: Karama, S., et al., Erratum to “Positive as
a representative US sample of healthy 6 to 18 year-olds”, Intellige
MRI Data Repository (database version 2.0) created by the NIH
MRI Study of Normal Brain Development. This is a multi-site,
longitudinal study of typically developing children, from ages
newborn through young adulthood, conducted by the Brain
Development Cooperative Group and supported by the National
Institute of Child Health and Human Development, the National
Institute on Drug Abuse, the National Institute of Mental Health,
and the National Institute of Neurological Disorders and Stroke
(Contract #s N01-HD02-3343, N01-MH9-0002, and N01-NS-9-
2314, -2315, -2316, -2317, -2319 and -2320). A listing of the
participating sites and of the study investigators can be found at
http://www.bic.mni.mcgill.ca/nihpd/info/participating_cen-
ters.html. The NIH Pediatric MRI study was organized around
two “objectives”, corresponding to two age groups, the largest
being Objective 1, comprised of subjects aged between 4:6 to
18:3years atVisit 1 (ie time1).Onlydata fromObjective1, Visit 1,
were used here.

2. Experimental procedures

2.1. Sampling and recruitment

The population-based sampling method implemented in the
NIH PediatricMRI studywas used tominimize biases that can be
present in samples of convenience in order to maximize the
generalizability of findings. Based on available US Census 2000
data, a representative healthy sample of 433 subjects was
recruited into objective-1 of the NIHPD study at 6 pediatric
study centers: Children's Hospital—Boston, Children's Hospital
Medical Center—Cincinnati, University of Texas HoustonMedical
School—Houston,UCLANeuropsychiatric Institute andHospital—
Los Angeles, Children's Hospital of Philadelphia—Philadelphia,
and Washington University—St. Louis. A sampling plan for each
pediatric center was developed from the Census data so as to
allow neighborhood demographic variables to be estimated for
corresponding zip codes (so called geocoding). This allowed
targeted recruitment and comparison to the general population
by reference to geocoded census data. Recruitment was
monitored continuously in order to assure that the sample
recruited across all pediatric centers was demographically
representative on the basis of variables that included age, gender,
ethnicity, and socioeconomic status. Once specific demographic
target goals were reached, enrollment ‘cells’were closed. As this
study aimed at recruiting healthy subjects, exclusion criteria
included (but were not limited to) prior history of most Axis I
psychiatric disorders, neurological, or other medical illness with
CNS implications (egmalignancy, systemic rheumatologic illness,
diabetes), an IQb70, intra-uterine exposure to substances known
or highly suspected to alter brain structure or function, and prior
family history (first degree relative) of inherited neurological
disorder or other inherited illness with CNS implications. For a
more extensive description of sampling procedures, see (Evans
et al., 2006). All data were transferred electronically to the data
coordinating center at the Montreal Neurological Institute, and
entered into a MYSQL database that allowed full interrogation of
the data (Evans et al., 2006).

2.2. Psychometric measures

Extensive batteries of behavioral measures were obtained
from recruited subjects on the day of or within a few days of
sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010
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scanning – for a thorough description, see Evans et al. (2006).
The principal intelligence measure used here was the
Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler,
1999) administered to children ages 6 and older. Thus, the
same test was used to measure intelligence across the age
range analyzed in this paper. The WASI includes vocabulary,
similarities, matrix reasoning, and block design subtests.
Subtest Tscores were subjected to a principal component
analysis (unrotatedmethod of extraction) to derive ameasure
of their shared variance as an estimate of general cognitive
ability for each subject. Scree plot analysis and the eigenva-
lues-greater-than-1 rule both indicated that there was a
single component accounting for about 48.6% of the total
variance in test performance. Scores on this first unrotated
component were saved as standardized scores with a mean of
0 and a standard deviation of 1. Although we used principal
components analysis, we adopt the much-used convention of
naming the first unrotated principal component, the general
cognitive factor derived from the four subtests.

It could be argued that IQ scores could have been used as a
measure of general cognitive ability instead of a general
cognitive factor. While IQ provides perhaps a fair estimate of
‘average’ cognitive ability, a derived general factor is a more
optimal measure of general intelligence (Carroll, 1993; Colom
et al., 2006; Johnson et al., 2004; Johnson et al., 2008; Neisser
et al., 1996; Plomin & Spinath, 2002). This being said, it is
noteworthy that the general cognitive factor derived here was
very highly correlated with WASI Full Scale IQ (r=0.99,
pb0.001).

2.3. MRI acquisition protocol

A 3D T1-weighted (T1W) Spoiled Gradient Recalled
(SPGR) echo sequence was obtained with 1 mm isotropic
data acquired sagittally from the entire head. Slice thickness
of ~1.5 mm was allowed for GE scanners due to their limit of
124 slices. In addition, T2-weighted (T2W) and proton
density weighted (PDW) images were acquired using a 2D
multi-slice (2 mm) dual echo fast spin echo (FSE) sequence.
Total acquisition time was ~25 min and was often repeated
when indicated by the scanner-side quality control process.
Some subjects were unable to tolerate this procedure and
received a fallback protocol that consisted of shorter 2D
acquisitions with slice thicknesses of 3 mm (Evans et al.,
2006).
Table 1
Demographic and WASI Full Scale IQ (FSIQ) characteristics of original sample and o

Objective 1 visit 1

n=433
Age (yrs) 10.4±3.8
Proportion of males 48%
Proportion with low/medium/high adjusted SES⁎ 22.9%/41.6%/35.5%
WASI-FSIQ⁎⁎ 110.7±12.5⁎⁎
Proportion of Whites/African Americans/Other 78.9%/9.2%/11.9%

When appropriate, means±standard deviations are provided.
⁎Based on the US Department of Housing and Urban Development method for com
⁎⁎ WASI IQ data available for only 380 subjects out of 433 that were initially recrui
⁎⁎⁎ The ‘Other’ category includes American Indian, Alaskan Native, Asian, Native Haw
provided or for which parents came from different racial or ethnic background.

Please cite this article as: Karama, S., et al., Erratum to “Positive as
a representative US sample of healthy 6 to 18 year-olds”, Intellige
2.4. MR image processing

All MR images were submitted to the CIVET pipeline
(version 1.1.9) (http://wiki.bic.mni.mcgill.ca/index.php/
CIVET) developed at the MNI for fully automated structural
image analysis (Ad-Dab'bagh et al., 2006). The main pipeline
processing steps include:

1) Linearly register native (ie original) MR images to standar-
dized MNI-Talairach space based on the ICBM152 data set
(Collins et al., 1994; Mazziotta et al., 1995; Talairach &
Tournoux, 1988). This step is implemented in order to
account for gross volume differences between subjects.

2) Correct for intensity non-uniformity artifacts using N3 (Sled
et al., 1998). These artifacts are introduced by the scanner
and need to be removed tominimize, in the current context,
biases in estimating gray matter boundaries.

3) Classify the image into white matter (WM), gray matter
(GM), cerebrospinal fluid (CSF) and background using a
neural net classifier (INSECT) (Zijdenbos et al., 2002).

4) Fit images with a deformable mesh model to extract 2-
dimensional inner (WM/GM interface) and outer (pial)
cortical surfaces for each hemisphere with the 3rd edition
of CLASP. This produces high-resolution hemispheric
surfaces with 81924 polygons each (40962 vertices (ie
cortical points) per hemisphere) (Kabani et al., 2001; Kim
et al., 2005; Lyttelton et al., 2007; MacDonald et al., 2000).
This step places 40962 cortical points on each hemisphere
for each subject.

5) Register both cortical surfaces for each hemisphere non-
linearly to a high resolution average surface template
generated from the ICBM152 data set in order to establish
inter-subject correspondence of the cortical points (Grab-
ner et al., 2006; Lyttelton et al., 2007;Mazziotta et al.,1995).

6) Apply a reverse of the linear transformation performed on
the images of each subject to allow cortical thickness
estimations to be made at each cortical point in the native
space of the magnetic resonance image (Ad-Dab'bagh
et al., 2005). This avoids having cortical thickness
estimations biased by the scaling factor introduced by
the linear transformations (ie step 1) applied to each
subject's brain.

7) Calculate cortical thickness at each cortical point using the
tlink metric (Lerch & Evans, 2005) and blur each subject's
cortical thickness map using a 20-millimeter full width at
f analyzed sample.

sample Accepted sample Statistics

n=216
12.1±3.5 t=5.51, pb0.001
46% χ2=0.17, p=.68
22.6%/40.6%/36.4% χ2=0.0071, pN .99
111.0±11.3 t=0.30, p=0.77
76.4%/8.3%/15.3% χ2=1.48, p=.48

paring family income levels as a function of regional costs of living.
ted.
aiian or Other Pacific Islander, and those for which ethnicity or race was not

sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010
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half maximum surface-based diffusion smoothing kernel
(a necessary step to impose a normal distribution to
corticometric data and to increase signal to noise ratio)
(Chung et al., 2001).
2.4.1. Subjects with imaging and cognitive data
Of the 433 subjects recruited, 392 had MRI acquisitions

that passed raw imaging data quality control (QC). Of these
392 subjects, 33 were under 6 years of age and had no WASI
evaluations. Due to the sensitivity of post-acquisition proces-
sing methods that produce corticometric measures on the
native MR images, all subjects with fallback acquisition
protocols, whether for T1W or T2W/PDW spectra, were
excluded from the present study. More specifically, of the
remaining 359 subjects with the full complement of MRI and
behavioral data, 107 had T1W and/or T2W/PD fallback
protocols and so 252 subjects were retained. Finally, a visual
QC (blinded as to the IQ of the subjects) of the native cortical
thickness images of each subject was carried out to make sure
that there were no important aberrations in cortical thickness
estimations for a given subject. 36 subjects had problemswith
their cortical thickness maps (eg in some cases, gyri were
fused together or parts of the frontal lobewere truncated) and
were eliminated from further analysis, leaving a final sample
size of 216 subjects. For a comparison of demographic and IQ
Fig. 1. Results of Cortical Thickness regressed against the cognitive factor for the wh
control for multiple comparisons. Colors, representing Pearson correlations as well a
templates generated from the ICBM152 data set. Results are corrected for gender, a

Please cite this article as: Karama, S., et al., Erratum to “Positive as
a representative US sample of healthy 6 to 18 year-olds”, Intellige
characteristics between the Objective 1 visit 1 sample and the
analyzed sample, see Table 1.

2.4.2. Statistical analyses
Statistical analyses were implemented using SurfStat, a

statistical toolbox (Worsley et al., 2004) created for MATLAB 7
(The MathWorks, Inc.) by Dr. Keith Worsley (http://www.
math.mcgill.ca/keith/surfstat/) at the MNI. Each subject's
absolute native-space cortical thickness was linearly regressed
against the general cognitive ability factor at each cortical point
after accounting for the effects of gender, age, andMRI scanners
from the six sites. In order to take into account previously
reported quadratic and cubic effects of age on cortical thickness
(Shaw et al., 2008), simple linear, quadratic, and cubic models
were tested for the age term. As quadratic and cubicmodels did
not provide a significantly better fit with the data, a simple first
order linear model was retained. Although handedness was
initially included as a regressor, it was found to add nothing to
the model and sowas discarded. This is likely in part explained
by the fact that only 9.7% of the current sample was non right-
handed and that between 31% and 54% of non right-handed
individuals (iemixed, ambidextrous, or left-handed)are known
to have the same pattern of hemispheric dominance as right-
handers (Isaacs et al., 2006). This would lead to an expectation
of onlyabout10 to 14 subjects in our sample of 216having right-
hemispheric dominance.
ole sample of 216 subjects. A False Discovery Rate threshold of 0.05 is used to
s Student t values, are superimposed on left and right lateral average surface
ge, and scanner.

sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010
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Table 2
Cortical point coordinates within areas of association between cortical
thickness and general cognitive ability for the whole sample (FDR
threshold=0.05).

Brodmann area Region name X, Y, Z coordinates
in MNI space

Left frontal
BA 4 Dorsal Precentral gyrus −31, −19, 73
BA 6 Superior frontal gyrus −21, 16, 63
BA 6 Ventral Precentral gyrus −60, 0, 23
BA 8 Medial frontal gyrus −4, 44, 47
BA 9 Middle frontal gyrus −26, 51, 31
BA 10 Middle frontal gyrus −18, 66, −5
BA 45 Inferior frontal gyrus −55, 28, 4
BA 46 Middle frontal gyrus −43, 45, 21
BA 47 Inferior frontal gyrus −50, 39, −3

Right frontal
BA 4 Dorsal precentral gyrus 44, −13, 63
BA 6 Superior frontal gyrus 22, 16, 63
BA 8 Medial frontal gyrus 4, 42, 49
BA 9 Superior frontal gyrus 13, 46, 40
BA 10 Middle frontal gyrus 14, 63, −9
BA 46 Middle frontal gyrus 46, 42, 21

Left parietal
BA 1, 2, 3 ⁎ Postcentral gyrus −62, −11, 35
BA 7 Precuneus −6, −65, 52
BA 39 Angular gyrus −47, 62, 47
BA 40 Supramarginal gyrus −64, −45, 27

Right parietal
BA 1, 2, 3 ⁎ Postcentral gyrus 58, −17, 48
BA 7 Precuneus 4, −54, 59
BA 7 Superior parietal lobule 17, −47, 72
BA 39 Angular gyrus 31, −62, 53

Left temporal
BA 20 Inferior temporal gyrus −55, −8, −39
BA 21 Middle temporal gyrus −60, 1, −27
BA 22 Wernicke's area −65, −43, 20
BA 28 Parahippocampal gyrus −25, −10, −35
BA 36 Lingual gyrus −17, −48, −9
BA 36 Medial occipito-temporal gyrus −28, −50, −18
BA 37 Lateral occipito-temporal gyrus −47, −47, −14
BA 38 Temporal pole −48, 17, −27
BA 41 Planum temporale −37, −30, 16

Right temporal
BA 20 Inferior temporal gyrus 53, −7, −40
BA 21 Middle temporal gyrus 63, −7, −22
BA 28 Parahippocampal gyrus 22, −23, −27
BA 36 Medial occipito-temporal gyrus 29, −52, −18
BA 38 Temporal pole 47, 19, −26

Left occipital
BA 18 Lateral occipital gyrus −36, −92, −1
BA 19 Lateral occipital gyrus −48, −82, 2

Right occipital
BA 18 Lateral occipital gyrus 32, −94, −6
BA 19 Lateral occipital gyrus 50, −75, 7

Left cingulate
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus −6, −42, 33
BA 24, 33 ⁎ Anterior cingulate gyrus −4, 38, 6

Right cingulate
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus 3, −47, 27
BA 24, 33 ⁎ Anterior cingulate gyrus 4, 38, 5
BA 25 Subcallosal area 2, 8, −9

⁎ These BA could not be distinguished from each other.
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In summary, the following model was fitted to each one of
the 81924 cortical points:

Y
e

b0 + b1CF + b2Age + b3Gender + b4Scanner + e

where:

Y Cortical Thickness
CF Cognitive Factor
b0 Y intercept
b1 to b4 regression coefficients for effects of the different

regressors
ε error term

For each cortical point, the coefficient of the CF regressor,
b1, was estimated and a resultant t-test value calculated,
thereby producing a 3D t-statistic map. A t-value threshold
of statistical significance was established, taking into
account multiple comparisons via the False Discovery Rate
(FDR) method (Benjamini & Hochberg, 1995; Genovese
et al., 2002). The FDR value is the expected proportion of
false positives among all cortical points where the t-value is
above the selected threshold. Thus, setting the threshold to
an FDR of 0.05 implies that it is expected that 5% of all
cortical points having a t-value above threshold, are false
positives. For the purpose of visualization, resultant thre-
sholded t-value and Pearson correlation maps were pro-
jected on an average surface template generated from the
ICBM152 data set.

In addition to examining results for the whole sample,
the cohort was split into two equal subgroups of 108 subjects
each in order to see whether or not the same areas were
associated with intelligence differences in both young
children and adolescents. After generating results for the
entire selected sample (n=216), analyses were performed
separately for young children (age range: 6 to 11.9 years)
and adolescents (age range: 12 to 18:3 years). A ‘Group by
CF’ interaction term (ie b5Group⁎CF) was added to the
model in order to make a formal statistical comparison
between the groups. The interaction was evaluated at each
cortical point to identify regions where the association
between cortical thickness and intelligence was significantly
stronger in adolescents than in young children, and vice
versa. This being done, the overall effect of age was
estimated on the whole sample by replacing the ‘Group by
CF’ interaction term by an ‘Age by CF’ interaction term (ie
b5Age⁎CF).

3. Results

Except for mean age, no statistically significant demo-
graphic differences were evidenced between the full NIH
Pediatric MRI sample and the analyzed subjects (for whom
WASI IQ data, good raw scan data, and good cortical
thickness estimations were available) (see Table 1). The
greater mean age for the analyzed sample is mostly due to
excluding children below age 6 (ie the lower age limit of the
WASI).

Regression of cortical thickness against the general
cognitive factor at each cortical point — while controlling
for age, gender, and scanner— revealed a positive association
sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010
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Fig. 2. Results of Cortical Thickness regressed against the cognitive factor for the sample of adolescents (n=108). A False Discovery Rate threshold of 0.05 is used to
control for multiple comparisons. Colors, representing Pearson correlations as well as Student t values, are superimposed on left and right lateral average surface
templates generated from the ICBM152 data set. Results are corrected for gender, age, and scanner.
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between cortical thickness and the general cognitive factor
in several areas distributed throughout the brain. Statisti-
cally significant foci were largely localized in multimodal
association areas and, while tending to be symmetrical,
were slightly more extensive on the left hemisphere (see
Fig. 1 and Table 2). Correlations in statistically significant
foci were in the modest to moderate range (0.15 to 0.32)
(see Fig. 1).

Stratifying the sample into a subgroup of young children
(mean IQ=111.7, SD=11.3) and a subgroup of adolescents
(mean IQ=110.3, SD=11.4), revealed a similar picture to
the one obtained with the whole sample for the group of
adolescents but, as would be expected due to decreased
power, with less extensive areas of association between
cortical thickness and the general cognitive factor (see Fig. 2
and Table 3). For the group of young children, no association
was found between cortical thickness and the general
cognitive factor under the FDR threshold of 0.05. However,
relaxing the threshold to 0.2, revealed a similar picture (see
Fig. 3 and Table 4) to the one obtained for adolescents. In
both groups, the most consistent areas of association
between cortical thickness and the general cognitive factor
were in lateral prefrontal, occipital extrastriate, and para-
hippocampal areas. In statistically significant foci, correla-
tions ranged between .25 and .44 for adolescents and
between .2 and .33 for young children. Examination of the
regressor coefficients of the ‘Group by CF’ and ‘Age by CF’
Please cite this article as: Karama, S., et al., Erratum to “Positive as
a representative US sample of healthy 6 to 18 year-olds”, Intellige
terms revealed no statistically significant group or age
effects on the associations between cortical thickness and
the cognitive ability factor. This remained the case for all
cortical points even after relaxing the threshold to an FDR
value of 0.5.

4. Discussion

Positive bilateral associations between cortical thickness
and a general cognitive factor derived from the four WASI
subtests were detected in many areas of the frontal,
parietal, temporal, and occipital lobes for a large, repre-
sentative sample of the US population between 6 and
18:3 years of age. Regions with the greatest relationship
between cortical thickness and a general cognitive factor
were observed in multimodal association areas. Young
children (ie 6 to 11.9 year-olds) and adolescents (ie 12 to
18:3 year-olds) exhibited associations in the same areas and
no statistically significant differences were observed
between them.

Overall, results are consistent with distributed models of
intelligence like the P-FIT (Jung & Haier, 2007). Our results,
however, include more brain regions than highlighted by the
P-FIT and place greater importance on medial structures than
the P-FIT model does. Indeed, while absent from the P-FIT, the
precuneus (part of the medial parietal lobe), the posterior
cingulate, the dorsomedial prefrontal cortex, as well as the
sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010
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Table 3
Cortical point coordinates within areas of association between cortical
thickness and general cognitive ability for the subgroup of adolescents (FDR
threshold=0.05).

Brodmann area Region name X, Y, Z coordinates
in MNI space

Left frontal
BA 4 Dorsal Precentral gyrus −30, −15, 73
BA 6 Superior frontal gyrus −8, 6, 71
BA 6 Middle frontal gyrus −37, 4, 40
BA 9 Middle frontal gyrus −26, 53, 26
BA 10 Middle frontal gyrus −18, 66, −5
BA 45 Inferior frontal gyrus −52, 35, 4
BA 46 Middle frontal gyrus −45, 42, 19

Right frontal
BA 6 Superior frontal gyrus −45, 42, 19
BA 10 Superior frontal gyrus 28, 62, −11

Left parietal
BA 1, 2, 3 ⁎ Postcentral gyrus −61, −13, 34
BA 7 Precuneus −65, −55, 39
BA 39 Angular gyrus −47, 61, 46
BA 40 Supramarginal gyrus −60, −37, 46

Right parietal
BA 1, 2, 3 ⁎ Postcentral gyrus 59, −16, 41
BA 7 Precuneus 4, −54, 59
BA 7 Superior parietal lobule 17, −47, 72
BA 39 Angular gyrus 31, −62, 53

Left temporal
BA 21 Middle temporal gyrus −60, 1, −27
BA 22 Wernicke's area −45, −54, 29
BA 28 Parahippocampal gyrus −23, −11, −35
BA 36 Medial occipito-temporal gyrus −28, −50, −18
BA 38 Temporal pole −49, 16, −26

Right temporal
BA 20 Inferior temporal gyrus 56, −12, −31
BA 21 Middle temporal gyrus 64, −10, −20
BA 36 Medial occipito-temporal gyrus 39, −20, −31

Left occipital
BA 18 Lateral occipital gyrus −37, −90, 0
BA 19 Lateral occipital gyrus −48, −82, 2

Right occipital
BA 18 Lateral occipital gyrus 33, −93, −6
BA 19 Lateral occipital gyrus 50, −78, 3

Left cingulate
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus −3, −48, 30

Right cingulate
BA 24, 33 ⁎ Anterior cingulate gyrus 4, 38, 6
BA 25 Subcallosal area 3, 11, −9

⁎ These BA could not be distinguished from each other.
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lingual and parahippocampal gyri, have all been identified
here as being associated, bilaterally, with the general
cognitive factor. Importantly, these are all known to be
areas where information from different parts of the brain
converges for high-level processing and have been shown
to be involved with cognitive performance (Cavanna &
Trimble, 2006; Eisenberg et al., 2005; Geake & Hansen,
Please cite this article as: Karama, S., et al., Erratum to “Positive as
a representative US sample of healthy 6 to 18 year-olds”, Intellige
2005; Gong et al., 2005; Haier et al., 2004; Hulshoff Pol
et al., 2006; Shaw et al., 2006; Stoitsis et al., 2008; Westlye
et al., 2008). While they are good candidates as modulators
of general intelligence, these regions generally reached here
lower levels of statistical significance than the regions
highlighted by the P-FIT. It could be speculated that this
reflects a genuine but relatively weaker association with
intelligence than the P-FIT regions, making them less
consistently detected across studies and leading to their
exclusion from the P-FIT.

Observing a decrease in statistical significance in both
children and adolescents, when comparedwith the group as a
whole, could be attributed to several factors. However, in both
subsamples, this decrease is most likely due to reduced
statistical power due to dividing the sample in two. The
relative greater decrease observed for the subsample of young
children (ie 6 to 11.9 years of age) may have been due to the
difficulty that many of them may have had with being
immobile for a prolonged period of time in a scanner (Evans
et al., 2006). Indeed, micromovements, which may not have
been sufficient to grossly distort the image and result in
rejection as part of the quality control procedures, may have
nonetheless induced a slight blurring effect on thewhite/gray
matter interface and lead to a deterioration in the precision of
cortical thickness estimations. Alternatively, it could be
speculated that the association between cortical thickness
and the cognitive ability factor is weaker or less homogeneous
in young children in that age group, leading to a decrease in
statistical significance.

Generally, current results are compatible with findings
from the Shaw et al. study (2006) in terms of brain regions
involved with intelligence differences (Shaw et al., 2006). In
that previous study, while associations were predominantly
in the prefrontal cortex, they also included significant areas
of the parietal lobe and small areas of the occipital and
temporal lobes. Here, we confirm and extend these findings,
using the same FDR threshold as that used by the Shaw et al.
study (2006), to encompass most if not all known cortical
association areas. Such a finding is meaningful as these areas
are specifically those known to be 1) involved in the
processing of multimodal information converging from
various regions of the brain, 2) those most likely to lead to
post-lesional cognitive deficits and 3) the ones that have
most frequently been theorized to be linked to intelligence
differences (Jung & Haier, 2007). While finding an extension
of the areas involved when compared with those reported in
the Shaw et al. study may be due to important differences in
the sample selection process, it is most likely due to
improved surface alignment within CLASP (Lyttelton et al.,
2007).

A strength of the current study is the use of a relatively
large representative sample of the US population with ages
ranging from 6 to 18:3 years. As the cost of scanning a large
sample of subjects and as the methodological complications
of recruiting one that is representative of a general population
are both generally prohibitive, most imaging studies have
been limited to recruiting relatively small samples of
convenience. Another strength of the current study is the
reliance on the same IQ test (ie the WASI) across the entire
age range analyzed. The earlier study (Shaw et al., 2006)
relied on measures that differed among the subjects studied
sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010

http://dx.doi.org/10.1016/j.intell.2009.03.010


Fig. 3. Results of Cortical Thickness regressed against the cognitive factor for the sample of young children (n=108). A False Discovery Rate threshold of 0.2 is used
to control for multiple comparisons. Colors, representing Pearson correlations as well as Student t values, are superimposed on left and right lateral average surface
templates generated from the ICBM152 data set. Results are corrected for gender, age, and scanner.
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(different number of subtests administered as well as
different tests). While the use of a general cognitive factor
derived from four disparate mental subtests is also a strength
here, a limitation is that this general factor was derived from a
relatively small group of subtests.

Being correlational in nature, the results presented here
are bound by the usual limitations associated with such data.
For instance, finding associations between a general cognitive
ability factor and a distributed network does not necessarily
imply an involvement of the whole network in cognitive
ability differences. Indeed, it is possible to imagine a
mechanism influencing cortical thickness throughout a
given network but with only a subset of this network being
responsible for intelligence differences. As the same mechan-
ism would influence cortical thickness throughout the net-
work, and assuming the existence of an association between
cortical thickness and intelligence, cortical thickness estima-
tions in components of this network would correlate with
each other as well as with intelligence. Yet, only cortical
thickness in the subset of this network responsible for
intelligence differences would really be of importance. This
being said, finding a correlation between cortical thickness
and a general cognitive ability factor preferentially distrib-
uted in knownmultimodal association areas is pleasing to the
Please cite this article as: Karama, S., et al., Erratum to “Positive as
a representative US sample of healthy 6 to 18 year-olds”, Intellige
mind and suggests that links between mental ability and
cortical thickness in these areas are not simply inconsequen-
tial findings.

In summary, using the recently developed cortical thick-
ness metric with improved between-subject alignment of
brain surfaces, regional cortical thickness in multimodal
association areas was found to be positively associated with
a general cognitive factor. While previous studies have shown
an involvement of cortical association areas, it is the first time
that an association between a general cognitive ability factor
and essentially most if not all cortical association areas is
evidenced in the same study. Results further suggest that
similar areas of the cortex are related to intelligence
differences in both children and adolescents. Results exhibit
a good level of generalizability as they have been evidenced
on a relatively large representative healthy young sample of
the US population. As a next step, it would be informative to
conduct the same analyses on a sample of individuals that
spans the whole adult age range. Also, it is noteworthy that
cortical thickness is not, on its own, sufficient to describe all
aspects of cortical shape. Cortical surface area, cortical
complexity (or gyrification), and cortical volume complete
the corticometric measurements that are possible and would
further add to the characterization of cortical shape associations
sociation between cognitive ability and cortical thickness in
nce (2009), doi:10.1016/j.intell.2009.03.010
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Table 4
Cortical point coordinates within areas of association between cortical
thickness and general cognitive ability for the subgroup of young children
(FDR threshold=0.2).

Brodmann area Region name X, Y, Z coordinates
in MNI space

Left frontal
BA 4 Dorsal Precentral gyrus −34, −31, 73
BA 6 Ventral Precentral gyrus −56, −2, 27
BA 8 Medial frontal gyrus −4, 42, 47
BA 9⁎ Middle frontal gyrus −26, 47, 37
BA 45⁎ Inferior frontal gyrus −54, 36, −2
BA 46⁎ Middle frontal gyrus −40, 71, 8
BA 47⁎ Inferior frontal gyrus −51, 37, −10

Right frontal
BA 8 Medial frontal gyrus 5, 51, 41
BA 9⁎ Superior frontal gyrus 15, 45, 44
BA 46 Middle frontal gyrus 41, 42, 24

Left parietal
BA 1, 2, 3 ⁎ Postcentral gyrus −62, −11, 39
BA 7 Precuneus −6, −66, 54
BA 40 Supramarginal gyrus −64, −46, 26

Right parietal
BA 1, 2, 3 ⁎ Postcentral gyrus 56, −17, 48
BA 7 Precuneus 12, −59, 58

Left temporal
BA 20 Inferior temporal gyrus −51, −6, −35
BA 22 Wernicke's area −63, −48, 27
BA 28 Parahippocampal gyrus −28, −15, −32
BA 36 Lingual gyrus −16, −48, −8
BA 36 Medial occipito-temporal gyrus −30, −45, −19
BA 37 Lateral occipito-temporal gyrus −47, −41, −19
BA 38 Temporal pole −38, 6, −42
BA 41 Planum temporale −43, −33, 20

Right temporal
BA 20 Inferior temporal gyrus 44, −11, −41
BA 21 Middle temporal gyrus 66, −11, −16
BA 36 Medial occipito-temporal gyrus 42, −24, −22
BA 38 Temporal pole 45, 19, −29

Left occipital
BA 18 Lateral occipital gyrus −31, −94, 3
BA 19 Lateral occipital gyrus −33, −91, 15

Right occipital
BA 18 Lateral occipital gyrus 28, −93, 20
BA 19 Lateral occipital gyrus '24, −98, 10

Left cingulate
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus −11, −42, 34
BA 24, 33 ⁎ Anterior cingulated gyrus −5, 40, 4

Right cingulate
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus 3, −47, 27
BA 24, 33 ⁎ Anterior cingulated gyrus 4, 38, 5

⁎ These BA could not be distinguished from each other.
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with intelligence. We are currently in the process of imple-
menting these analyses.
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Appendix A. Brain development cooperative group

Key personnel from the six pediatric study centers are as
follows: Children's Hospital Medical Center of Cincinnati,
Principal Investigator William S. Ball, M.D., Investigators Anna
Weber Byars, Ph.D., Mark Schapiro, M.D., Wendy Bommer, R.N.,
April Carr, B.S., April German, B.A., Scott Dunn, R.T.; Children's
Hospital Boston, Principal Investigator Michael J. Rivkin, M.D.,
Investigators Deborah Waber, Ph.D., Robert Mulkern, Ph.D.,
Sridhar Vajapeyam, Ph.D., Abigail Chiverton, B.A., Peter Davis,
B. S., Julie Koo, B.S., Jacki Marmor, M.A., Christine Mrakotsky,
Ph.D., M.A., Richard Robertson, M.D., Gloria McAnulty, Ph.D;
University of Texas Health Science Center at Houston, Principal
Investigators Michael E. Brandt, Ph.D., Jack M. Fletcher, Ph.D.,
Larry A. Kramer, M.D., Investigators Grace Yang, M.Ed., Cara
McCormack, B.S., Kathleen M. Hebert, M.A., Hilda Volero, M.D.;
Washington University in St. Louis, Principal Investigators Kelly
Botteron, M.D., Robert C. McKinstry, M.D., Ph.D., Investigators
WilliamWarren, Tomoyuki Nishino,M.S., C. Robert Almli, Ph.D.,
Richard Todd, Ph.D., M.D., John Constantino, M.D.; University of
California Los Angeles, Principal Investigator James T.
McCracken, M.D., Investigators Jennifer Levitt, M.D., Jeffrey
Alger, Ph.D., Joseph O'Neil, Ph.D., Arthur Toga, Ph.D., Robert
Asarnow, Ph.D., David Fadale, B.A., Laura Heinichen, B.A., Cedric
Ireland B.A.; Children's Hospital of Philadelphia, Principal
Investigators Dah-Jyuu Wang, Ph.D. and Edward Moss, Ph.D.,
Investigators Robert A. Zimmerman, M.D., and Research Staff
Brooke Bintliff, B.S., Ruth Bradford, Janice Newman, M.B.A. The
Principal Investigator of the data coordinating center at McGill
University is Alan C. Evans, Ph.D., Investigators Rozalia
Arnaoutelis, B.S., G. Bruce Pike, Ph.D., D. Louis Collins, Ph.D.,
Gabriel Leonard, Ph.D., Tomas Paus, M.D., Alex Zijdenbos, Ph.D.,
and Research Staff Samir Das, B.S., Vladimir Fonov, Ph.D., Luke
Fu, B.S., Jonathan Harlap, Ilana Leppert, B.E., Denise Milovan,
M.A., Dario Vins, B.C., and at Georgetown University, Thomas
Zeffiro,M.D., Ph.D. and JohnVanMeter, Ph.D. Ph.D. Investigators
at the Neurostatistics Laboratory, Harvard University/McLean
Hospital, Nicholas Lange, Sc.D., andMichael P. Froimowitz,M.S.,
work with data coordinating center staff and all other team
members on biostatistical study design and data analyses. The
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Ching Chang, Sc.D., Chen Guan Koay, Ph.D. and LindsayWalker,
M.S. The Principal Collaborators at the National Institutes of
Health are Lisa Freund, Ph.D. (NICHD), Judith Rumsey, Ph.D.
(NIMH), Lauren Baskir, Ph.D. (NIMH), Laurence Stanford, PhD.
(NIDA), Karen Sirocco, Ph.D. (NIDA) and from NINDS, Katrina
Gwinn-Hardy, M.D., and Giovanna Spinella, M.D. The Principal
Investigator of the Spectroscopy Processing Center at the
University of California Los Angeles is James T. McCracken,
M.D., Investigators Jeffry R. Alger, Ph.D., Jennifer Levitt, M.D.,
Joseph O'Neill, Ph.D.
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