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ABSTRACT 
 
Image registration refers to the process of finding the spatial correspondence between two or more images.  This is usually 
done by applying a spatial transformation, computed automatic or manually, to a given image using a continuous image 
model computed either with interpolation or approximation methods. We show that noise induced signal variance in 
interpolated images differs significantly from the signal variance of the original images in native space. We describe a 
simple approach to compute the signal variance in registered images based on the signal variance and covariance of the 
original images, the spatial transformations computed by the registration procedure, and the interpolation or approximation 
kernel chosen.  Our approach is applied to diffusion tensor (DT) MRI data. We show that incorrect noise variance 
estimates in registered diffusion weighted images can affect the estimated DT parameters, their estimated uncertainty, as 
well as indices of goodness of fit such as chi-square maps. In addition to DT-MRI, we believe that this methodology would 
be useful any time parameter extraction methods are applied to registered or interpolated data. 
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1. INTRODUCTION 
 
Post-acquisition image alignment (registration) is routinely performed in biomedical research and clinical practice1,2. 
Applications using image registration techniques include motion and distortion correction in functional MRI (fMRI), 
diffusion tensor MRI (DT-MRI), and MR relaxometry experiments. In addition, image registration procedures are 
increasingly being used in computational based studies of neuroanatomy. This involves understanding the variability of 
tissue properties, including shape, across specific populations. An example is voxel-based morphometry, described in3.  
 
In general, many of the current post-processing methodologies can be summarized as follows. A set of medical images is 
acquired and reconstructed using standard methodologies. This step may include: filtering to avoid “ringing” artifacts, 
denoising, intensity corrections, etc. Next, using one of many available algorithms, images are registered to ensure, as 
much as possible, that a fixed image coordinate corresponds to the same structure, or anatomical coordinate, in all images 
acquired. This step is necessary because the subject being imaged may move during data acquisition. In addition, images 
may contain geometric distortions with respect to each other. In echo planar (EPI) MRI these distortions can be caused by 
magnetic field susceptibility related artifacts. In EPI-based diffusion weighted imaging, significant geometric distortions 
may also occur due to eddy-currents induced by the rapidly switched diffusion weighting magnetic field gradients applied 
during imaging. Corrections to account for such misregistration artifacts are absolutely necessary to ensure the data 
analysis is reliable. In addition to correcting for motion and geometric distortions, the entire image sequence may also be 
aligned to a standard template image, using stereotaxic normalization techniques, for example, so that the data analysis 
results can be more conveniently interpreted. Data analysis consists of extracting or estimating some physically meaningful 
parameters from the sequence of medical images. In DT-MRI a 3x3 symmetric diffusion tensor is estimated, based on 
which several other quantities such as measures of diffusion anisotropy and depictions of fiber tracts can be generated. In 
fMRI, these may be statistical parametric maps4, for example.    
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In many of these applications the analysis of the registered images involves fitting or estimating model parameters from 
the intensity values of the images. For such tasks it is crucial to know the correct signal variance of the registered images 
so that least-squares procedures, for example, can be properly implemented. Though significant research has been devoted 
to estimating signal variance in medical images--some examples in MRI include5-7 among others--it is important to 
recognize that the signal variances in the registered and the original unregistered images differ. This is because the image 
interpolation or approximation step generally required in image registration can, as will be shown later, significantly 
change the noise properties of the image. We will show how a simple formula can be used to compute the appropriate 
signal variance in registered images. The analysis of diffusion weighted MRI data using the diffusion tensor model will be 
used as a case study. That is, given a set of diffusion weighted MR images (DWI) we use an existing software to register 
the DWIs to remove rigid body motion and eddy-current related distortions prior to tensor computation. We then show that 
noise variance in the registered images differs from the noise variance in the original images. However, even though DT-
MRI is the only application discussed in detail in this paper, we believe that the general approach described in this paper 
should be considered whenever registered images are being analyzed using procedures that require knowledge of the 
variance in the image intensity values. 
 
At the time of writing not much related work can be found in the biomedical imaging literature. Friston et al8 address the 
problem of removing movement- related artifacts, such as those caused by intensity fluctuations due to the change in 
position of the imaged object with respect to the reference frame of the scanner. In other works9,10 the authors investigate 
the error in the intensity values produced by interpolation procedures applied on the registered images. Maas and 
Renshaw11 discuss artifacts related to high frequency losses on registered (interpolated) data. Pluim et al. report that 
interpolation methods may cause undesirable artifacts when estimating the Mutual Information similarity measure12. 
Nickerson et al.13 describe a method through which the local intensity variance in positron emission tomography (PET) can 
be estimated from the operations performed during image reconstruction. None of these works, however, detail the 
importance of, and methods for obtaining correct estimates of the signal variance at each coordinate of each registered 
image.    
 
In the field of diffusion weighted imaging and diffusion tensor MRI, several researchers have investigated methods for 
performing post-acquisition motion and distortion correction of DWI data14-19. Though the registration methods differ, 
most of these works use linear interpolation to produce the series of DWIs. This series is then used to estimate one 

diffusion tensor for each voxel via least- squares fitting procedures similar to the 2χ  minimization procedure described 

in20.  We show in this paper that least-squares fitting procedures that extract diffusion tensor estimates from registered data 
can be affected by the changes in image noise properties due to interpolation. We also provide a simple method for 
obtaining correct variance estimates for the registered images.   
 

2. THEORY 
 
In practice, the process of registering two images is usually approached within an optimization framework in which the 

goal is to find a spatial transformation f(x), where 22: ℜ→ℜf , or  33: ℜ→ℜf  for volumetric images, that maximizes 

some similarity measure I between the digitized target T(x) and source S(x) images: 
 

( )( ))(,)(max xx TfSI
f

.    (1) 

 
The function f(x) may be a rigid body, affine, or higher order transformation, depending on the application. The function I 
usually measures the similarity between the images being registered by computing some form of statistical dependency 
between the intensity values of the images. In the processing pipeline described above, the problem defined by equation  
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(1) is usually solved for K images in the image sequence {S1(x), …, SK(x)}, so it is clear that the sequence of images 
{S1(f1(x)), Sk(fk(x)), …, SK(fK(x))} is properly aligned. Note that in cases where fk(x) is used to correct for geometric 
distortions caused by imperfect magnetic field gradients in MRI, for example, the intensity value of the corrected images 
may also have to be multiplied by a correction factor19,21: 

 

( ) ( ) ( ))(det)()(
~

xxx kkkkk fJacfSfS = ,     (2) 

 
where ( ))(det xkfJac  stands for the determinant of the Jacobian matrix of the transformation fk(x). 

Independently of how the solution to equation (1) is actually computed for each image in the sequence, many imaging 
applications require knowing the value of the registered images {S1(f1(xi)), …, SK(fK(xi))} for some arbitrary coordinate xi. 
Since in general the point fk(x) will not coincide with a sampling coordinate of image Sk, an interpolation or approximation 
strategy must be used to produce the image value Sk(fk(x)). Many approximation and interpolation methods can be chosen 
to perform such tasks22. Most estimate the value of Sk(fk(x)) based on a linear combination of the intensity values of image 
Sk around the point fk(x). Figure 1(a) illustrates this process. Note that w refers to grid coordinates of the image Sk. 
Mathematically, this interpolation or approximation procedure can be expressed as: 

            

( ) ( )∑
Θ∈

=
i

iKiKK SfS
w

wx α)( ,    (3) 

 
where Θ  defines a set of sampling coordinates that surround  f(x) (see Figure 1(a)).  The coefficients iα  of the linear 

combination (3), as well as the size of Θ are determined solely by the choice of interpolation or approximation kernel. For 
the linear interpolation method, one of the most popular image interpolation methods, the value of the image S at 
coordinate f(x) is given by: 

 
 

 
(a) (b) 

 
Figure 1:  Part (a), schematic diagram depicting the process of interpolation performed for image registration. A 
coordinate in the target image space is transferred to a coordinate in the source image space. The value of the image 
at the source image space coordinate is computed based on the intensity values of the sampling coordinates around 
it. Part (b): diagram depicting the order of points used in the definition of the covariance matrix of the data. 
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where ixi xfV −= )(x , jyj yfP −= )(x  , kzk zfQ −= )(x , and {xi, yj, zk} are image grid coordinates for which 

1)( <− ix xf x , 1)( <− iy yf x , 1)( <− iz zf x .  Thus the coefficients of the linear combination (3) are given by: 

 
)1)(1)(1(,, kjikji QPV −−−=α .  (5) 

 
The set Θ , in this case, are the coordinates wi for which 1)( ≤− if wx  holds. Naturally, when different interpolation or 

approximation methods are used, different formulas are needed for estimating the variance of any given interpolated image 
value. In general, the coefficients of the linear combination (3) can be written in terms of sampled values of the 
interpolation kernel being used. 

Because of random variability introduced at several steps during image acquisition, the measurement Sk(wi) should be 
considered a random variable with a variance ( ))(Var ikS w .  For MR images it is customary to assume that noise variance, 

denoted by 2λ , is uniform throughout the imaging volume. Note that, though it can be assumed that Sk(wi) and Sk(wj), 
where ji ≠ , have equal variances, in general they are not independent measurements because several image 

reconstruction steps effectively correlate measurements from different image coordinates. Correlation in the data due to the 
reconstruction procedure can arise from filtering during analog to digital conversion, filtering to remove ringing artifacts, 
filtering to remove noise, correcting for ghosting artifacts (particularly salient in EPI reconstructions), and others. 
Correlation between values in different image coordinates occurs not only in MRI, but X-ray based computed tomography 
and positron emission tomography (PET) also. This is because most reconstruction algorithms use filtering operations that 
correlate intensity values of different image coordinates. A simple method for estimating this correlation in MRI will be 
described in the next section. 

In short, because of the noise variability introduced during image acquisition and processing, the measurements Sk(wi) and 
Sk(wj) are random variables with variance ( ))(Var ikS w  and ( ))(Var jkS w , respectively, and covariance 

( ))(),(Cov jkik SS ww .  Thus, Sk(fk(x)), as defined by equation (3), is also a random variable with variance23: 
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If it can be assumed that ( ) 2)(Var λ=ikS w  is approximately constant for all values of the image (this is often the case in 

the foreground of MR images at high signal to noise ratios) (6) simplifies to, 
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In cases when the intensity correction function defined in (2) needs to be applied to the registered image ( ))(xkk fS  to 

obtain intensity corrected value ( ))(
~

xkk fS , it is easy to show that the correct formula for the variance becomes: 
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Next we show that formula (8) is necessary when quantitative analysis, such as estimation of an effective diffusion tensor, 
is to be performed on registered data. 

3. METHODS 

3.1. Diffusion weighted MRI data acquisition 
 
The data sets in the demonstrations used throughout this paper were acquired with a standard single-shot multi-slice spin-
echo EPI sequence (i.e.: fat suppression pulse, 90 degree pulse, first diffusion gradient, 180 degree pulse, second diffusion 
gradient, EPI readout). Scans were performed on a 1.5 T GE Signa system equipped with a whole-body gradient coil able 
to produce gradient pulses up to 50 mT/m (GE Medical Systems, Milwaukee, WI). The imaged volume was composed of 
80 contiguous slices with 2 mm slice thickness and 2 mm in-plane resolution. The echo-time was 82.7 ms, the read-out 
time 50 ms, and the repetition time was greater than 10 s with cardiac gating (4 acquisitions per heart beat starting with a 
150 ms delay after the rise of the sphygmic wave as measured with a peripheral pulse oxymeter). The gradient strength 
was 49 mT/m, yielding a b value (i.e., trace of the b-matrix) of 1,120 s/mm2. A total of 56 3D images were acquired by 
repeating 8 times a diffusion sampling scheme described previously24 which includes one volume with no diffusion 
weighting followed by the same volume six times, acquired with diffusion gradients applied in different directions. The 
total imaging time was approximately 20 minutes. Replicate volumes were acquired for signal to noise considerations in 
order to improve the quality of the estimated diffusion tensor parameters. The signal to noise ratio, as measured by the 
mean signal in the region of the thalamus divided by the estimated standard deviation of the signal (see section below), 
was about 13 for the T2-weighted images and about 7 for the diffusion weighted images. 

3.2. MRI noise estimation 
 
The sources that introduce uncertainty in each voxel intensity are many and are generally put into one of two categories: 
thermal noise, and physiological noise. Other sources may also exist in the electronics of the acquisition system, such as 
digitization etc., but these can be minimized in an ideal experiment. Thermal noise is usually considered as “white noise” 
because it is expected that its power should be equal for all frequencies within the readout bandwidth.  Because the images 
are reconstructed using the Fourier transform, the variance that characterizes the uncertainty due to thermal noise is 
constant throughout the imaging volume25.  Typically, however, the image analysis process is done on the magnitude of the 
data that has been reconstructed with the Fourier transform.  This causes the noise induced variance in the background 
regions of magnitude reconstructed images to be lower than the variance in the foreground of the images. We estimate the 
variance of the signal in foreground of the images by computing the variance of magnitude reconstructed intensity values 
in an artifact-free background region and propagating it to regions with strong signal from the brain through the method 
described in5,6. 
 
The correlation matrix used in our experiments was estimated empirically. Though theoretically possible, it could be very 
cumbersome to account for all of the filtering steps applied to the data before it becomes a magnitude image. In addition, 
some steps taken during analog to digital conversion of the free induction decay signals may be proprietary and thus 
inaccessible. Instead, we acquired and reconstructed several 3D images of pure noise. Using this pure noise image data we 
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computed the correlation coefficient between the original volumes and the same volumes shifted by one pixel in the x, y, 
and z directions. Note that because we are using linear interpolation, it is only necessary to include 1 voxel shift in the 
computation (8). When bases functions of wider support are used in the interpolation or approximation procedure, the 
correlations of larger shifts may be required. Using this method, we computed the following 8x8 correlation matrix:  
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Figure 1(b)--which defines the ordering of the voxel coordinates--helps explain the correlation matrix expressed in (9). 
Because we are assuming that most of the correlation is caused by linear filtering operations applied on the image data, the 
noise correlation matrix (9) should be approximately constant throughout the domain of the original magnitude 
reconstructed images. Note that since our acquisition is based on a 2D EPI pulse sequence, measurements between one 
slice and the next show no significant correlation. Also note that the correlations in the x, and y directions are not equal, 
since additional operations are performed in the phase encode (y in this case) direction to minimize ghosting artifacts. 
Lastly, since we are also assuming that the noise variance in the original magnitude reconstructed image is constant, the 
covariance matrix used in (8) is given by: 

 
2),(),( λ×= jiCorrjiCov .     (10) 

 

3.3. Diffusion tensor estimation 
 
The diffusion tensor model was estimated in each voxel x from the diffusion weighted data by minimizing the following 
equation: 
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where D(x) is a 3x3 symmetric matrix, A(x) is the amplitude term, and bk is the b-matrix for image k, and D:b stands for 
the matrix dot product20. The minimization was performed using the Levenberg-Marquardt least-squares method. 

3.4. Simulation experiments 
 
As an initial test of our variance estimation software we performed simulation experiments using artificially constructed 
data. In this experiment, one hundred 2D images of Gaussian distributed random noise with mean zero and variance one 
were rotated about their centers by 5 degrees using bilinear interpolation. In this simulation, the correlation between the 
noisy values of any two coordinates was approximately zero.  For a fixed pixel coordinate x the variance across all of the 
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rotated images was computed and displayed. The purpose of this experiment is to show that the variance in the images 
acquires a particular striped structure. We show that by using equation (8), the variance in the interpolated images can be 
predicted exactly. 

3.5. Real data experiments 
 
The diffusion weighted data used in the examples in this paper were registered to account for patient motion and eddy-
current induced geometric distortions using the methodology described in19. The details about the registration algorithm 
being used are not particularly relevant. Only that, once the spatial transformations that register the set of DW images are 
calculated, the output images are computed using trilinear interpolation.  
  
The diffusion tensor at each voxel was computed using the registered images by solving equation (11) as described above. 
For comparison purposes, we also estimate the diffusion tensor from the registered images using equation (11), but using a 

constant term for the noise variance ( ) 2
~

)(Var λ=







xkk fS . We then compare several relevant quantities derived from the 

estimated diffusion tensor computed with and without formula (8), including the trace, fractional anisotropy, and 
2χ errors. 

4. RESULTS 
 
The results of the simulation experiments are shown in Figure 3. Part (a) shows a sample noisy image computed as 
described above. Part (b) shows the same image rotated by 5 degrees about its center. Part (c) shows an image of the 
variance of the one thousand rotated images computed at each pixel. Clearly the variance became non-uniform and 
acquired a striped pattern throughout the domain of the image. This variance image was computed analytically using 
formula (7), and the result is shown in part (d).  
 
A similar effect can be seen in real data experiments using diffusion weighted images. Though these striped artifacts are 

practically invisible in the individual interpolated DWI volumes, they become evident in the 2χ  maps computed using 

equation (11). Some results are shown in Figure 3. In this experiment a set of DWI volumes was rotated about its 
horizontal axis by about 7.5 degrees, thus causing interpolation to be performed between values of different slices, as well 
as between values of different lines in the logical y direction. For this experiment, the same rotation transformation was 

 

(a) (b) (c) (d)(a) (b) (c) (d)
 

 
 
Figure 2:  Simulation showing how the interpolation necessary to relate measurements in two images can 
significantly affect the noise properties of the interpolated image. Part (a): an image of simulated noise. Part (b) is 
the image in part (a) rotated by 5 degrees. Part (c) is the variance of image (b) computed by repeating the rotation 
experiment 100 times. Part (d) shows the variance of image (b) predicted by formula (8). 
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applied to each DWI volume, that is: f1(x)=fk(x) …=fK(x). Part (a) of Figure 3 shows the 2χ map computed using a single 

value, 2λ , for the variance of each voxel in each image. Horizontal stripes are visible along the vertical axis of the image, 
reflecting the different amounts of interpolation performed at each voxel location. Part (b) shows the variance predicted 

using eq. (8). Part (c) shows the 2χ map computed using the variance given by eq. (8). The “striping” patterns become 

negligible when compared to those shown in part (a) of the same figure. Note that the dynamic ranges of both 2χ  maps in 

this example were auto-scaled to obtain maximum contrast.  
 
We also compared some of the most well known parameters derived from the diffusion tensor computed from the fitting of 
eq. (11). For reference, the amplitude image, A in formula (11), is shown in figure 4. Figure 5(a) shows the relative error 
between the trace parameter computed with and without the variance correction scheme proposed above. The relative error 
was computed using the following formula: |vcorrected-vuncorrected|/ vcorrected., where ‘v’ stands for the voxel’s specific value for 
the trace of the diffusion tensor. The absolute value of the difference between the fractional anisotropy values computed 
with and without the variance correction described above is shown in part (b) of figure 5.  

5. DISCUSSION 
 
The rotation experiments performed with the simulated noisy images demonstrate qualitatively and quantitatively the 
effect that image interpolation can have on the noise variance in registered or interpolated images. The experiment also 
shows that formula (8) can be used to estimate the variance in the interpolated images if the initial covariance matrix of the 
sampled image is known. 
 
Experiments using real DWIs showed that the change of image noise properties caused by the registration (interpolation) 
procedure can significantly affect parameter estimation procedure in DT-MRI. First, the alignment of the entire DWI 

dataset to a standard template can cause 2χ maps to acquire a striped pattern if a single value for the image intensity 

variance is used during tensor estimation. The pattern can be explained by the non-uniform intensity variance introduced 
by the image interpolation step.  The patterns disappear when the correct noise variance in each voxel of each image, given 

(a) (b) (c)(a) (b) (c)
 

 
 

Figure 3:  Demonstration of bias in 2χ between the DT model and registered DWI data. Part (a) show the 2χ map 

computed using a single value for the variance in the data. Part (b) shows the non-uniform variance estimated using 

formula (8). Part (c) shows the same 2χ map, however, this time computed using the variance values displayed in 

part (b). 
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by equation (8), is used to compute the diffusion tensor. In our experience, 

the striped pattern in the 2χ   values is negligible if the DWI dataset is not 

aligned to a standard template, in addition to being corrected for motion and 
distortion, even if a single value for the intensity variance is used in 
estimating the tensor model. Nonetheless, formula (8) should be used in this 
case--because the images have suffered interpolation--to ensure an 

estimation of the correct variance values. In general the 2χ  computed from 

registered images is lower than the 2χ  computed from unregistered images 

when significant misregistration due to motion is present. However, the 2χ  

values computed using a single variance value estimated from the original 

(unregistered) images were lower than the 2χ  values computed using 

equation (8) to estimate the correct intensity variance. This is to be 
expected since the variance of registered images at any given voxel location 
is less than or equal to the variance of the original (unregistered) images 
because of the interpolations necessary for registration. Thus, if a single 

variance value estimated from original (unregistered) images is used for the tensor computation, the overall effect will be 

an artificial decrease in the 2χ  maps derived from the tensor fitting.    

 
We have also shown that the estimation of the trace and fractional anisotropy parameters of the diffusion tensor can be 
affected by incorrect noise variance estimates. In the experiment shown, the error between the parameters estimated with 
and without the variance correction to account for image registration was small: a few relative percentage points for the 
trace of the diffusion tensor and a few absolute percentage points for the fractional anisotropy index. We expect that the 
error caused by inappropriate weights in computing the actual parameters of the diffusion tensor model will be largest 
when the data being fit differs substantially from the model being used. To understand this, one only has to think of the 
extreme case in which the model fits the data without error. In this case, the weights being used become irrelevant since 
the numerator of the chi-squared equation becomes zero. The error between the data and the model arises from normally 
distributed thermal noise, physiological noise, as well as regions where it is known that the DT model poorly describes the 
underlying diffusion process, e.g. regions of crossing fibers. When considering only thermal, normally distributed additive 
noise, as we do throughout this paper, errors caused by incorrect variance estimates are not expected to be large and may 
diminish as the number of diffusion weighted images increases. As shown in the results section, however, these errors are 
expected to be in the order of a few percent. 
 
The precise effect that changed image noise properties due to interpolation or approximation will have on DT estimation 
procedures cannot be determined a priori and will depend on several aspects of the registration and data processing 
procedures. Some of these are: the spatial transformations used to register the images, the interpolation or approximation 
kernel used, the noise variance and covariance in the original images, and the anatomical content of the images. However, 
it is worth noting that a translation of 0.5 pixels in all three dimensions can cause the variance of the signal to be reduced 
to 0.125 of the original variance of the signal when the linear interpolation method is used and if the data are spatially 

uncorrelated. If the correct noise variance value is not used, the resultant 2χ measure will be underestimated by 8 times. 

Using the correlation matrix stated in equation (9) a translation of 0.5 pixels in all three dimensions would cause the 

variance in the interpolated image to be 0.25 of the variance in the original data. This would cause the 2χ measure to be 

underestimated by 4 times if all images in the dataset suffered similar interpolation. 

5.1. Implications for the analysis of variance of DT parameters 

 
 

 
Figure 4:  Amplitude image depicting 
the region in the brain where results are 
analyzed. 
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Knowledge of the uncertainty in the estimated diffusion tensor model parameters is important for assessing the 
significance of results of inter-subject or inter-acquisition comparisons. It is worth also noting that thermal noise variance 
not only plays a role in estimating the parameters of the model but also their uncertainty. From Basser et al.20  it is known 
that when multivariate  log-linear regression is used to compute the diffusion tensor parameters, the error variances of the 

estimated diffusion parameters are given by the diagonal elements of the matrix ( ) 11 −−Σ BB e
T where B is the “design” 

matrix for the experiment, computed from the vectors that define the diffusion weighting gradients being used, and the 

diagonal values of 1−Σe given by )(/
~

2
~

kk SVarS , where kS
~

 represents the intensity value of the kth image (for a fixed 

spatial coordinate) in the experiment. As shown in appendix B, if incorrect values of )(
~

iSVar  are used the variance of the 

estimated parameters is no longer ( ) 11 −−Σ BB e
T  and it is given by equation a modified version of it. Methods for estimating 

the uncertainty in parameters computed through nonlinear models usually rely on Monte Carlo-type simulations for which 
it is necessary to know the variance that characterizes the uncertainty of each image intensity value26.   

5.2. Implications for functional MRI and voxel based morphometry 
 
Note that though we used diffusion tensor imaging as a case study, we believe that the same methodology could be used 
whenever data analysis requiring noise variance estimates is performed on registered or interpolated data. Some 
application examples in biomedical imaging include fMRI data analysis, studies of tissue shape and composition using 
statistical analysis of image data, MR relaxometry experiments, etc. In all such applications the goal is to detect image 
intensity changes that are the result of some biologically relevant phenomena. In fMRI this may be BOLD activation 
correlated with some type of brain activity, while in voxel based morphometry, for example, this may be information 
related to diseased tissue. Both fMRI data analysis and voxel based morphometry methods often rely on a generalized 
linear model for identifying the presence, absence, and quantification, of biologically relevant phenomena. In this 
framework the measured image data (at a fixed voxel coordinate), defined by an N dimensional vector y, is modeled as a 

(a) (b)(a) (b)  
 
Figure 5:  Part (a): relative error (absolute value of the difference divided by the ‘correct’ value) between the trace 
of the diffusion tensor computed with and without the variance estimate given by formula (8). Part (b): absolute 
value of the difference between fractional anisotropy values computed with and without the variance estimated by 
formula (8). 
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linear combination of explanatory coefficients arranged in an NxM matrix M and unknown parameters defined by an M 
dimensional vector a: y=Ma + e, where e represents an N dimensional error vector whose entries are usually assumed to be 
independent, equally and normally distributed. If the error values are indeed normally distributed the maximum likelihood 
estimate for the model parameters is given by a=(MTM)-1MTy, while the covariance matrix of the estimates is given by Sa 
= L SyL

T, with L=(MTM)-1MT and Sa, Sy representing the covariance matrix of the estimated parameters and original data, 
respectively. Since the measurements y are usually assumed to be independently and identically distributed, the covariance 

matrix of the estimated parameters reduces to Sa = 2λ  (MTM)-1, with 2λ  being the assumed noise variance. Note that this 
analysis is usually performed on registered images in order to account for patient motion and geometric distortions. As 
shown in this paper, since different images will have different spatial transformations (and thus different interpolation) 
applied on them, the constant noise variance assumption is no longer appropriate. That is, the variance due to noise of an 
image value that has suffered interpolation is expected to be different from the variance of an image value that has suffered 
no interpolation at all. At this point it is unclear what effect this will have on image analysis results obtained using the 
general linear model, though it is an issue that should be investigated further.  

6. SUMMARY AND CONCLUSIONS 
 
As fitting and estimation procedures from registered image data become increasingly more elaborate and quantitative, 
knowledge of the intensity variance due to noise will become more important for increasing the accuracy and scientific 
value of the results obtained from them. A method for estimating the variance in registered images is presented. The 
general approach can be summarized as follows. The output of the registration procedure is computed using an image 
interpolation or approximation procedure. The interpolation or approximation procedure can be written as a linear 
combination of the values of the image being registered.  The coefficients of the linear combination are determined by the 
choice of interpolation or approximation kernel. Since the values of the image being registered are typically corrupted by 
noise, this operation can be viewed as a linear combination of random variables.  The variance of the linear combination is 
given by well known statistical formulas.  
 
The image interpolation or approximation generally required by image registration procedures will inevitably affect the 
noise variance properties of the images. We have shown that incorrect variance estimates can have a significant effect on 
diffusion tensor estimation procedures.  The method we proposed for estimating the noise variance in registered images 

was shown to be successful in both simulated and real data experiments. Since 2χ  measures and noise variance estimates 

are used more and more frequently in diffusion data analysis--examples include image registration14, diffusion model 
selection27,28, robust tensor estimation29, and brain tumor pathology detection30--correct variance estimates from registered 
image data will become increasingly important. 
 
The methods described here could also be useful in other biomedical imaging applications such as MR relaxometry, fMRI 
data analysis, voxel based morphometry, etc. However, the effects of the technique in each of these applications are not 
discussed in detail here and could be the subject of future study. The techniques described here could also find applications 
in other image processing and data analysis fields such as automatic target recognition and segmentation of registered data 
obtained from satellite or other remote sensing machinery. 
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